Abstract

On the evening of 25 November 1998, a cirrus cloud revealing the pastel colors of the iridescence phenomenon was photographed and studied by a polarization lidar system at the University of Utah Facility for Atmospheric Remote Sensing (FARS). The diffraction of sunlight falling on relatively minute cloud particles, which display spatial gradients in size, is the cause of iridescence. According to the 14-year study of midlatitude cirrus clouds at FARS, cirrus rarely produce even poor iridescent patches, making this particularly long-lived and vivid occurrence unique. In this unusually high (13.2–14.4-km) and cold (-69.7 ° to -75.5°) tropopause-topped cirrus cloud, iridescence was noted from ∼6.0° to ∼13.5° from the Sun. On the basis of simple diffraction theory, this indicates the presence of particles of 2.5–5.5-μm effective diameter. The linear depolarization ratios of δ = 0.5 measured by the lidar verify that the cloud particles were nonspherical ice crystals. The demonstration that ice clouds can generate iridescence has led to the conclusion that iridescence is rarely seen in midlatitude cirrus clouds because populations of such small particles do not exist for long in the presence of the relatively high water-vapor supersaturations needed for ice-particle nucleation.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).
  2. M. E. Mascart, Traite d’Optique (Gauthier-Villars et Fils, Paris, 1889), Vol. 1.
  3. K. Sassen, “Corona producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991).
    [CrossRef] [PubMed]
  4. W. J. Humphries, Physics of the Air (McGraw-Hill, New York, 1929).
  5. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  6. J. A. Lock, L. Yang, “Mie theory of the corona,” Appl. Opt. 30, 3408–3414 (1991).
    [CrossRef] [PubMed]
  7. P. Parviainen, C. F. Bohren, V. Makela, “Vertical elliptical coronas caused by pollen,” Appl. Opt. 33, 4548–4551 (1994).
    [CrossRef] [PubMed]
  8. E. Trankle, B. Mielke, “Simulation and analysis of pollen coronas,” Appl. Opt. 33, 4552–4562 (1994).
    [CrossRef] [PubMed]
  9. G. C. Simpson, “Coronae and iridescent clouds,” Q. J. R. Meteorol. Soc. 38, 291–299 (1912).
    [CrossRef]
  10. M. Minnaert, The Nature of Light and Color in the Open Air (Dover, New York, 1954).
  11. K. Sassen, “Iridescence in an aircraft contrail,” J. Opt. Soc. Am. 69, 1080–1083 (1979).
    [CrossRef]
  12. K. Sassen, “Cirrus clouds: a modern perspective,” in Cirrus, D. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, eds. (Oxford U. Press, Oxford, 2002), pp. 11–40.
  13. K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS: the Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
    [CrossRef]
  14. S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the First ISCCP Regional Experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
    [CrossRef]
  15. K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. I. Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
    [CrossRef]
  16. K. Sassen, S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2112 (2001).
    [CrossRef]
  17. K. Sassen, Y. Takano, “Parry arc: a polarization lidar, ray- tracing, and aircraft case study,” Appl. Opt. 39, 6738–6745 (2000).
    [CrossRef]
  18. M. I. Mishchenko, K. Sassen, “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophys. Res. Lett. 25, 309–312 (1998).
    [CrossRef]
  19. K. Sassen, J. Zhu, S. Benson, “Midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. IV. Optical displays,” Appl. Opt. 42, 332–341 (2003).
    [CrossRef] [PubMed]
  20. P. DeMott, “Laboratory study of cirrus cloud processes,” in Cirrus, D. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, eds. (Oxford U. Press, Oxford, 2002), pp. 136–146.
  21. R. F. Lin, D. O’C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, X. Jiu, “Cirrus parcel model comparison project phase. I. The critical components to simulate cirrus initiation explicitly,” J. Atmos. Sci. 59, 2305–2329 (2002).
    [CrossRef]

2003 (1)

2002 (1)

R. F. Lin, D. O’C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, X. Jiu, “Cirrus parcel model comparison project phase. I. The critical components to simulate cirrus initiation explicitly,” J. Atmos. Sci. 59, 2305–2329 (2002).
[CrossRef]

2001 (3)

K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS: the Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
[CrossRef]

K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. I. Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
[CrossRef]

K. Sassen, S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2112 (2001).
[CrossRef]

2000 (1)

1998 (1)

M. I. Mishchenko, K. Sassen, “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophys. Res. Lett. 25, 309–312 (1998).
[CrossRef]

1994 (2)

1991 (2)

1987 (1)

S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the First ISCCP Regional Experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
[CrossRef]

1979 (1)

1912 (1)

G. C. Simpson, “Coronae and iridescent clouds,” Q. J. R. Meteorol. Soc. 38, 291–299 (1912).
[CrossRef]

Benson, S.

K. Sassen, J. Zhu, S. Benson, “Midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. IV. Optical displays,” Appl. Opt. 42, 332–341 (2003).
[CrossRef] [PubMed]

K. Sassen, S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2112 (2001).
[CrossRef]

Bohren, C. F.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).

Campbell, J. R.

K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. I. Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
[CrossRef]

Comstock, J. M.

K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS: the Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
[CrossRef]

Cotton, R.

R. F. Lin, D. O’C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, X. Jiu, “Cirrus parcel model comparison project phase. I. The critical components to simulate cirrus initiation explicitly,” J. Atmos. Sci. 59, 2305–2329 (2002).
[CrossRef]

Cox, S. K.

S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the First ISCCP Regional Experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
[CrossRef]

DeMott, P.

P. DeMott, “Laboratory study of cirrus cloud processes,” in Cirrus, D. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, eds. (Oxford U. Press, Oxford, 2002), pp. 136–146.

DeMott, P. J.

R. F. Lin, D. O’C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, X. Jiu, “Cirrus parcel model comparison project phase. I. The critical components to simulate cirrus initiation explicitly,” J. Atmos. Sci. 59, 2305–2329 (2002).
[CrossRef]

Humphries, W. J.

W. J. Humphries, Physics of the Air (McGraw-Hill, New York, 1929).

Jensen, E.

R. F. Lin, D. O’C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, X. Jiu, “Cirrus parcel model comparison project phase. I. The critical components to simulate cirrus initiation explicitly,” J. Atmos. Sci. 59, 2305–2329 (2002).
[CrossRef]

Jiu, X.

R. F. Lin, D. O’C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, X. Jiu, “Cirrus parcel model comparison project phase. I. The critical components to simulate cirrus initiation explicitly,” J. Atmos. Sci. 59, 2305–2329 (2002).
[CrossRef]

Karcher, B.

R. F. Lin, D. O’C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, X. Jiu, “Cirrus parcel model comparison project phase. I. The critical components to simulate cirrus initiation explicitly,” J. Atmos. Sci. 59, 2305–2329 (2002).
[CrossRef]

Lin, R. F.

R. F. Lin, D. O’C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, X. Jiu, “Cirrus parcel model comparison project phase. I. The critical components to simulate cirrus initiation explicitly,” J. Atmos. Sci. 59, 2305–2329 (2002).
[CrossRef]

Lock, J. A.

Mace, G. G.

K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS: the Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
[CrossRef]

Makela, V.

Mascart, M. E.

M. E. Mascart, Traite d’Optique (Gauthier-Villars et Fils, Paris, 1889), Vol. 1.

McDougal, D. S.

S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the First ISCCP Regional Experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
[CrossRef]

Mielke, B.

Minnaert, M.

M. Minnaert, The Nature of Light and Color in the Open Air (Dover, New York, 1954).

Mishchenko, M. I.

M. I. Mishchenko, K. Sassen, “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophys. Res. Lett. 25, 309–312 (1998).
[CrossRef]

Parviainen, P.

Randall, D. A.

S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the First ISCCP Regional Experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
[CrossRef]

Sassen, K.

K. Sassen, J. Zhu, S. Benson, “Midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. IV. Optical displays,” Appl. Opt. 42, 332–341 (2003).
[CrossRef] [PubMed]

R. F. Lin, D. O’C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, X. Jiu, “Cirrus parcel model comparison project phase. I. The critical components to simulate cirrus initiation explicitly,” J. Atmos. Sci. 59, 2305–2329 (2002).
[CrossRef]

K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS: the Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
[CrossRef]

K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. I. Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
[CrossRef]

K. Sassen, S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2112 (2001).
[CrossRef]

K. Sassen, Y. Takano, “Parry arc: a polarization lidar, ray- tracing, and aircraft case study,” Appl. Opt. 39, 6738–6745 (2000).
[CrossRef]

M. I. Mishchenko, K. Sassen, “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophys. Res. Lett. 25, 309–312 (1998).
[CrossRef]

K. Sassen, “Corona producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991).
[CrossRef] [PubMed]

K. Sassen, “Iridescence in an aircraft contrail,” J. Opt. Soc. Am. 69, 1080–1083 (1979).
[CrossRef]

K. Sassen, “Cirrus clouds: a modern perspective,” in Cirrus, D. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, eds. (Oxford U. Press, Oxford, 2002), pp. 11–40.

Schiffer, R. A.

S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the First ISCCP Regional Experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
[CrossRef]

Simpson, G. C.

G. C. Simpson, “Coronae and iridescent clouds,” Q. J. R. Meteorol. Soc. 38, 291–299 (1912).
[CrossRef]

Starr, D. O’C.

R. F. Lin, D. O’C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, X. Jiu, “Cirrus parcel model comparison project phase. I. The critical components to simulate cirrus initiation explicitly,” J. Atmos. Sci. 59, 2305–2329 (2002).
[CrossRef]

Takano, Y.

Trankle, E.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

Wang, Z.

K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS: the Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).

Yang, L.

Zhu, J.

Appl. Opt. (6)

Bull. Am. Meteorol. Soc. (2)

K. Sassen, J. M. Comstock, Z. Wang, G. G. Mace, “Cloud and aerosol research capabilities at FARS: the Facility for Atmospheric Remote Sensing,” Bull. Am. Meteorol. Soc. 82, 1119–1138 (2001).
[CrossRef]

S. K. Cox, D. S. McDougal, D. A. Randall, R. A. Schiffer, “FIRE—the First ISCCP Regional Experiment,” Bull. Am. Meteorol. Soc. 13, 114–118 (1987).
[CrossRef]

Geophys. Res. Lett. (1)

M. I. Mishchenko, K. Sassen, “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophys. Res. Lett. 25, 309–312 (1998).
[CrossRef]

J. Atmos. Sci. (3)

K. Sassen, J. R. Campbell, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. I. Macrophysical and synoptic properties,” J. Atmos. Sci. 58, 481–496 (2001).
[CrossRef]

K. Sassen, S. Benson, “A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103–2112 (2001).
[CrossRef]

R. F. Lin, D. O’C. Starr, P. J. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, X. Jiu, “Cirrus parcel model comparison project phase. I. The critical components to simulate cirrus initiation explicitly,” J. Atmos. Sci. 59, 2305–2329 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

Q. J. R. Meteorol. Soc. (1)

G. C. Simpson, “Coronae and iridescent clouds,” Q. J. R. Meteorol. Soc. 38, 291–299 (1912).
[CrossRef]

Other (7)

M. Minnaert, The Nature of Light and Color in the Open Air (Dover, New York, 1954).

K. Sassen, “Cirrus clouds: a modern perspective,” in Cirrus, D. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, eds. (Oxford U. Press, Oxford, 2002), pp. 11–40.

P. DeMott, “Laboratory study of cirrus cloud processes,” in Cirrus, D. Lynch, K. Sassen, D. O’C. Starr, G. Stephens, eds. (Oxford U. Press, Oxford, 2002), pp. 136–146.

W. J. Humphries, Physics of the Air (McGraw-Hill, New York, 1929).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).

M. E. Mascart, Traite d’Optique (Gauthier-Villars et Fils, Paris, 1889), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Relationship between spherical particle diameter d and angular position from the Sun θ of corona-iridescent red bands for the first three orders n based on simple diffraction theory, from Ref. 3. The inserted equation relates d to the angle of the red bands. The relative size of the solar (or lunar) disk, which limits corona visibility for large particles, is shown for comparison. The dashed curve represents the approximate limit of small sphere sizes that are affected by anomalous diffraction.

Fig. 2
Fig. 2

Telephoto photograph of cirrus cloud iridescence obtained at 2350 UTC on 25 November 1998, showing a mother-of-pearl effect in the cirrus wave in the middle of the image. Note how the altocumulus clouds at the top left have a much different appearance.

Fig. 3
Fig. 3

Telephoto photograph obtained 2 min after that in Fig. 2, showing different iridescence effects and a broad, red aureole as the Sun sets behind the Oquirrh Mountain Range in northern Utah.

Fig. 4
Fig. 4

Lidar height-time display of the iridescent cirrus cloud layer beginning at 0000 UTC on 26 September 1998. To the right of the relative returned energy display at the top is the concurrent Salt Lake City temperature sounding; the key for the lidar linear depolarization ratio (δ-value) display is given at the bottom right.

Metrics