Abstract

A model for a clustered free-space optical interconnect is developed and is used to determine the maximum array density that can be achieved, together with the optimal cluster parameters that maximize this density. This model includes misalignment tolerance and the impact of multimode vertical-cavity surface-emitting laser beams. We find that for short interconnect distances, the maximum channel density is limited by the speed of the relay lenses, but as the interconnect distance increases, geometric aberrations become the limiting factor. We also determine the interconnect distance below which a micro-channel relay is more suitable and the distance above which a single-lens solution is adequate.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
    [CrossRef]
  2. D. A. B. Miller, “Physical reason for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).
  3. D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
    [CrossRef] [PubMed]
  4. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnects using microlens arrays,” Opt. Quantum Electron. 34, 6471–6480 (1992).
  5. H. Thienpont, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, M. Hanney, “Plastic microoptical interconnect modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE, 88, 769–779 (2000).
  6. G. Kim, X. Han, R. T. Chen, “An 8-Gb/s optical backplane bus based on microchannel interconnects: design, fabrication, and performance measurements,” J. Lightwave Technol. 18, 1477–1486 (2000).
    [CrossRef]
  7. D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, A. G. Kirk, “A 256 channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
    [CrossRef]
  8. C. Berger, J. Ekman, X. Wang, P. Marchand, H. Spaanenburg, F. Kiamilev, S. Esener, “Parallel distributed free-space optoelectronic compute engine using flat “plug-on-top” optics package,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstian, eds., Proc. SPIE4089, 1037–1045 (2000).
    [CrossRef]
  9. D. T. Neilson, S. M. Prince, D. A. Baillie, F. A. P. Tooley, “Optical design of a 1024-channel free-space sorting demonstrator,” Appl. Opt. 36, 9243–9252 (1997).
    [CrossRef]
  10. D. T. Neilson, C. P. Barrett, “Performance trade-offs for conventional lenses for free-space digital optics,” Appl. Opt. 35, 1240–1248 (1996).
    [CrossRef] [PubMed]
  11. M. Chateauneuf, A. G. Kirk, D. V. Plant, T. Yamamoto, J. D. Ahearn, “512-channel vertical-cavity surface-emitting laser based free-space optical link,” Appl. Opt. 41, 5552–5561 (2002).
    [CrossRef] [PubMed]
  12. M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000).
    [CrossRef]
  13. H. Sasaki, K. Kotani, H. Wada, T. Takamori, T. Ushikubo, “Scalability analysis of diffractive optical element-based free-space photonic circuits for interoptoelectronic chip interconnections,” Appl. Opt. 40, 1843–1855 (2001).
    [CrossRef]
  14. F. Lacroix, B. Robertson, M. H. Ayliffe, E. Bernier, F. A. P. Tooley, M. Châteauneuf, D. V. Plant, A. G. Kirk, “Design and Implementation of a Four-Stage Clustered Free-Space Optical Interconnect,” in Optics in Computing ’98,P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 107–110 (1998).
    [CrossRef]
  15. A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Optics Commun. 86, 365–370 (1991).
    [CrossRef]
  16. R. R. Michael, M. P. Chistensen, M. W. Haney, “Experimental evaluation of a 3-D optical shuffle interconnection module of the slinding banyan architecture,” J. Lightwave Technol. 14, 1970–1978 (1996).
    [CrossRef]
  17. M. W. Haney, M. P. Christensen, “Performance scaling comparison for free-space optical and electrical interconnection approaches,” Appl. Opt. 37, 2886–2894 (1998).
    [CrossRef]
  18. M. H. Ayliffe, D. V. Plant, “On the design of misalignment-tolerant free-space optical interconnects,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstiam, eds., Proc SPIE4089, 905–916 (2000).
    [CrossRef]
  19. A. E. Siegman, S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
    [CrossRef]
  20. V. Baukens, “Scalable micro-optical modules for short-distance photonic-VLSI interconnections,” Ph.D. dissertation (Vrije Universiteit Brussel, Brussels, Belgium, 2001).
  21. M. P. Christensen, P. Milojkovic, M. W. Haney, “Analysis of a hybrid micro/macro-optical method for distortion removal in free-space optical interconnections,” J. Opt. Soc. Am. A 19, 2473–2478 (2002).
    [CrossRef]

2002 (2)

2001 (2)

H. Sasaki, K. Kotani, H. Wada, T. Takamori, T. Ushikubo, “Scalability analysis of diffractive optical element-based free-space photonic circuits for interoptoelectronic chip interconnections,” Appl. Opt. 40, 1843–1855 (2001).
[CrossRef]

D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, A. G. Kirk, “A 256 channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

2000 (2)

M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000).
[CrossRef]

G. Kim, X. Han, R. T. Chen, “An 8-Gb/s optical backplane bus based on microchannel interconnects: design, fabrication, and performance measurements,” J. Lightwave Technol. 18, 1477–1486 (2000).
[CrossRef]

1998 (1)

1997 (2)

1996 (4)

F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
[CrossRef]

D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
[CrossRef] [PubMed]

D. T. Neilson, C. P. Barrett, “Performance trade-offs for conventional lenses for free-space digital optics,” Appl. Opt. 35, 1240–1248 (1996).
[CrossRef] [PubMed]

R. R. Michael, M. P. Chistensen, M. W. Haney, “Experimental evaluation of a 3-D optical shuffle interconnection module of the slinding banyan architecture,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

1993 (1)

A. E. Siegman, S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
[CrossRef]

1992 (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnects using microlens arrays,” Opt. Quantum Electron. 34, 6471–6480 (1992).

1991 (1)

A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Optics Commun. 86, 365–370 (1991).
[CrossRef]

Ahearn, J. D.

Ayliffe, M. H.

F. Lacroix, B. Robertson, M. H. Ayliffe, E. Bernier, F. A. P. Tooley, M. Châteauneuf, D. V. Plant, A. G. Kirk, “Design and Implementation of a Four-Stage Clustered Free-Space Optical Interconnect,” in Optics in Computing ’98,P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 107–110 (1998).
[CrossRef]

M. H. Ayliffe, D. V. Plant, “On the design of misalignment-tolerant free-space optical interconnects,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstiam, eds., Proc SPIE4089, 905–916 (2000).
[CrossRef]

Baillie, D. A.

Barrett, C. P.

Baukens, V.

V. Baukens, “Scalable micro-optical modules for short-distance photonic-VLSI interconnections,” Ph.D. dissertation (Vrije Universiteit Brussel, Brussels, Belgium, 2001).

H. Thienpont, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, M. Hanney, “Plastic microoptical interconnect modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE, 88, 769–779 (2000).

Berger, C.

C. Berger, J. Ekman, X. Wang, P. Marchand, H. Spaanenburg, F. Kiamilev, S. Esener, “Parallel distributed free-space optoelectronic compute engine using flat “plug-on-top” optics package,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstian, eds., Proc. SPIE4089, 1037–1045 (2000).
[CrossRef]

Bernier, E.

F. Lacroix, B. Robertson, M. H. Ayliffe, E. Bernier, F. A. P. Tooley, M. Châteauneuf, D. V. Plant, A. G. Kirk, “Design and Implementation of a Four-Stage Clustered Free-Space Optical Interconnect,” in Optics in Computing ’98,P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 107–110 (1998).
[CrossRef]

Chandramani, P.

M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000).
[CrossRef]

Chateauneuf, M.

Châteauneuf, M.

D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, A. G. Kirk, “A 256 channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

F. Lacroix, B. Robertson, M. H. Ayliffe, E. Bernier, F. A. P. Tooley, M. Châteauneuf, D. V. Plant, A. G. Kirk, “Design and Implementation of a Four-Stage Clustered Free-Space Optical Interconnect,” in Optics in Computing ’98,P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 107–110 (1998).
[CrossRef]

Chen, R. T.

Chistensen, M. P.

R. R. Michael, M. P. Chistensen, M. W. Haney, “Experimental evaluation of a 3-D optical shuffle interconnection module of the slinding banyan architecture,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

Christensen, M. P.

Christianson, M. P.

M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000).
[CrossRef]

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnects using microlens arrays,” Opt. Quantum Electron. 34, 6471–6480 (1992).

Ekman, J.

C. Berger, J. Ekman, X. Wang, P. Marchand, H. Spaanenburg, F. Kiamilev, S. Esener, “Parallel distributed free-space optoelectronic compute engine using flat “plug-on-top” optics package,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstian, eds., Proc. SPIE4089, 1037–1045 (2000).
[CrossRef]

Erkman, J.

M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000).
[CrossRef]

Esener, S.

C. Berger, J. Ekman, X. Wang, P. Marchand, H. Spaanenburg, F. Kiamilev, S. Esener, “Parallel distributed free-space optoelectronic compute engine using flat “plug-on-top” optics package,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstian, eds., Proc. SPIE4089, 1037–1045 (2000).
[CrossRef]

Faucher, J.

D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, A. G. Kirk, “A 256 channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

Fokken, G. J.

M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000).
[CrossRef]

Gilbert, B. K.

M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000).
[CrossRef]

Han, X.

Haney, M. W.

M. P. Christensen, P. Milojkovic, M. W. Haney, “Analysis of a hybrid micro/macro-optical method for distortion removal in free-space optical interconnections,” J. Opt. Soc. Am. A 19, 2473–2478 (2002).
[CrossRef]

M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000).
[CrossRef]

M. W. Haney, M. P. Christensen, “Performance scaling comparison for free-space optical and electrical interconnection approaches,” Appl. Opt. 37, 2886–2894 (1998).
[CrossRef]

R. R. Michael, M. P. Chistensen, M. W. Haney, “Experimental evaluation of a 3-D optical shuffle interconnection module of the slinding banyan architecture,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

Hanney, M.

H. Thienpont, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, M. Hanney, “Plastic microoptical interconnect modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE, 88, 769–779 (2000).

Hermanne, A.

H. Thienpont, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, M. Hanney, “Plastic microoptical interconnect modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE, 88, 769–779 (2000).

Hinton, H. S.

D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
[CrossRef] [PubMed]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnects using microlens arrays,” Opt. Quantum Electron. 34, 6471–6480 (1992).

Kiamilev, F.

M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000).
[CrossRef]

C. Berger, J. Ekman, X. Wang, P. Marchand, H. Spaanenburg, F. Kiamilev, S. Esener, “Parallel distributed free-space optoelectronic compute engine using flat “plug-on-top” optics package,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstian, eds., Proc. SPIE4089, 1037–1045 (2000).
[CrossRef]

Kim, G.

Kirk, A. G.

M. Chateauneuf, A. G. Kirk, D. V. Plant, T. Yamamoto, J. D. Ahearn, “512-channel vertical-cavity surface-emitting laser based free-space optical link,” Appl. Opt. 41, 5552–5561 (2002).
[CrossRef] [PubMed]

D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, A. G. Kirk, “A 256 channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

F. Lacroix, B. Robertson, M. H. Ayliffe, E. Bernier, F. A. P. Tooley, M. Châteauneuf, D. V. Plant, A. G. Kirk, “Design and Implementation of a Four-Stage Clustered Free-Space Optical Interconnect,” in Optics in Computing ’98,P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 107–110 (1998).
[CrossRef]

Kotani, K.

Lacroix, F.

F. Lacroix, B. Robertson, M. H. Ayliffe, E. Bernier, F. A. P. Tooley, M. Châteauneuf, D. V. Plant, A. G. Kirk, “Design and Implementation of a Four-Stage Clustered Free-Space Optical Interconnect,” in Optics in Computing ’98,P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 107–110 (1998).
[CrossRef]

Laprise, E.

D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, A. G. Kirk, “A 256 channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

Lohmann, A. W.

A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Optics Commun. 86, 365–370 (1991).
[CrossRef]

Marchand, P.

C. Berger, J. Ekman, X. Wang, P. Marchand, H. Spaanenburg, F. Kiamilev, S. Esener, “Parallel distributed free-space optoelectronic compute engine using flat “plug-on-top” optics package,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstian, eds., Proc. SPIE4089, 1037–1045 (2000).
[CrossRef]

McCormick, F. B.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnects using microlens arrays,” Opt. Quantum Electron. 34, 6471–6480 (1992).

Michael, R. R.

R. R. Michael, M. P. Chistensen, M. W. Haney, “Experimental evaluation of a 3-D optical shuffle interconnection module of the slinding banyan architecture,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Physical reason for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

Milojkovic, F.

M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000).
[CrossRef]

Milojkovic, P.

Neilson, D. T.

Ottevaere, H.

H. Thienpont, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, M. Hanney, “Plastic microoptical interconnect modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE, 88, 769–779 (2000).

Plant, D. V.

M. Chateauneuf, A. G. Kirk, D. V. Plant, T. Yamamoto, J. D. Ahearn, “512-channel vertical-cavity surface-emitting laser based free-space optical link,” Appl. Opt. 41, 5552–5561 (2002).
[CrossRef] [PubMed]

D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, A. G. Kirk, “A 256 channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
[CrossRef] [PubMed]

M. H. Ayliffe, D. V. Plant, “On the design of misalignment-tolerant free-space optical interconnects,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstiam, eds., Proc SPIE4089, 905–916 (2000).
[CrossRef]

F. Lacroix, B. Robertson, M. H. Ayliffe, E. Bernier, F. A. P. Tooley, M. Châteauneuf, D. V. Plant, A. G. Kirk, “Design and Implementation of a Four-Stage Clustered Free-Space Optical Interconnect,” in Optics in Computing ’98,P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 107–110 (1998).
[CrossRef]

Prince, S. M.

Razavi, K.

D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, A. G. Kirk, “A 256 channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

Rieve, J.

M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000).
[CrossRef]

Robertson, B.

D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
[CrossRef] [PubMed]

F. Lacroix, B. Robertson, M. H. Ayliffe, E. Bernier, F. A. P. Tooley, M. Châteauneuf, D. V. Plant, A. G. Kirk, “Design and Implementation of a Four-Stage Clustered Free-Space Optical Interconnect,” in Optics in Computing ’98,P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 107–110 (1998).
[CrossRef]

Rolston, D. R.

Sasaki, H.

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnects using microlens arrays,” Opt. Quantum Electron. 34, 6471–6480 (1992).

Siegman, A. E.

A. E. Siegman, S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
[CrossRef]

Spaanenburg, H.

C. Berger, J. Ekman, X. Wang, P. Marchand, H. Spaanenburg, F. Kiamilev, S. Esener, “Parallel distributed free-space optoelectronic compute engine using flat “plug-on-top” optics package,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstian, eds., Proc. SPIE4089, 1037–1045 (2000).
[CrossRef]

Takamori, T.

Thienpont, H.

H. Thienpont, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, M. Hanney, “Plastic microoptical interconnect modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE, 88, 769–779 (2000).

Tooley, F. A. P.

D. T. Neilson, S. M. Prince, D. A. Baillie, F. A. P. Tooley, “Optical design of a 1024-channel free-space sorting demonstrator,” Appl. Opt. 36, 9243–9252 (1997).
[CrossRef]

F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnects using microlens arrays,” Opt. Quantum Electron. 34, 6471–6480 (1992).

F. Lacroix, B. Robertson, M. H. Ayliffe, E. Bernier, F. A. P. Tooley, M. Châteauneuf, D. V. Plant, A. G. Kirk, “Design and Implementation of a Four-Stage Clustered Free-Space Optical Interconnect,” in Optics in Computing ’98,P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 107–110 (1998).
[CrossRef]

Townsend, S. W.

A. E. Siegman, S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
[CrossRef]

Tuteleers, P.

H. Thienpont, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, M. Hanney, “Plastic microoptical interconnect modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE, 88, 769–779 (2000).

Ushikubo, T.

Venditti, M. B.

D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, A. G. Kirk, “A 256 channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

Verschaffelt, G.

H. Thienpont, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, M. Hanney, “Plastic microoptical interconnect modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE, 88, 769–779 (2000).

Vickberg, M.

M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000).
[CrossRef]

Volckaerts, B.

H. Thienpont, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, M. Hanney, “Plastic microoptical interconnect modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE, 88, 769–779 (2000).

Vynck, P.

H. Thienpont, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, M. Hanney, “Plastic microoptical interconnect modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE, 88, 769–779 (2000).

Wada, H.

Wang, X.

C. Berger, J. Ekman, X. Wang, P. Marchand, H. Spaanenburg, F. Kiamilev, S. Esener, “Parallel distributed free-space optoelectronic compute engine using flat “plug-on-top” optics package,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstian, eds., Proc. SPIE4089, 1037–1045 (2000).
[CrossRef]

Yamamoto, T.

Appl. Opt. (6)

IEEE J. Quantum Electron. (1)

A. E. Siegman, S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
[CrossRef]

Int. J. Optoelectron. (1)

D. A. B. Miller, “Physical reason for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

J. Lightwave Technol (1)

D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Châteauneuf, A. G. Kirk, “A 256 channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

J. Lightwave Technol. (2)

R. R. Michael, M. P. Chistensen, M. W. Haney, “Experimental evaluation of a 3-D optical shuffle interconnection module of the slinding banyan architecture,” J. Lightwave Technol. 14, 1970–1978 (1996).
[CrossRef]

G. Kim, X. Han, R. T. Chen, “An 8-Gb/s optical backplane bus based on microchannel interconnects: design, fabrication, and performance measurements,” J. Lightwave Technol. 18, 1477–1486 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Quantum Electron. (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnects using microlens arrays,” Opt. Quantum Electron. 34, 6471–6480 (1992).

Optics Commun. (1)

A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Optics Commun. 86, 365–370 (1991).
[CrossRef]

Proc IEEE (1)

M. W. Haney, M. P. Christianson, F. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Erkman, P. Chandramani, F. Kiamilev, “Description and evaluation of the Fast-Net smart pixel-based optical interconnection prototype,” Proc IEEE 88, 819–828 (2000).
[CrossRef]

Other (5)

V. Baukens, “Scalable micro-optical modules for short-distance photonic-VLSI interconnections,” Ph.D. dissertation (Vrije Universiteit Brussel, Brussels, Belgium, 2001).

H. Thienpont, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, G. Verschaffelt, B. Volckaerts, A. Hermanne, M. Hanney, “Plastic microoptical interconnect modules for parallel free-space inter- and intra-MCM data communication,” Proc. IEEE, 88, 769–779 (2000).

M. H. Ayliffe, D. V. Plant, “On the design of misalignment-tolerant free-space optical interconnects,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstiam, eds., Proc SPIE4089, 905–916 (2000).
[CrossRef]

C. Berger, J. Ekman, X. Wang, P. Marchand, H. Spaanenburg, F. Kiamilev, S. Esener, “Parallel distributed free-space optoelectronic compute engine using flat “plug-on-top” optics package,” in Optics in Computing 2000, R. A. Lessard, T. V. Galstian, eds., Proc. SPIE4089, 1037–1045 (2000).
[CrossRef]

F. Lacroix, B. Robertson, M. H. Ayliffe, E. Bernier, F. A. P. Tooley, M. Châteauneuf, D. V. Plant, A. G. Kirk, “Design and Implementation of a Four-Stage Clustered Free-Space Optical Interconnect,” in Optics in Computing ’98,P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 107–110 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical interconnect topologies: (a) macrolens, (b) clustered interconnect, (c) microchannel relay.

Fig. 2
Fig. 2

(a) Clustered optical interconnect and (b) cluster layout. Labels are p: channel pitch, D: lens aperture along each edge, h: distance from the center of a lens to the outermost channels, f: relay lens focal length; n: refractive index of spacer.

Fig. 3
Fig. 3

Schematic of the three modules used to model the optical interconnect (a single cluster is shown).

Fig. 4
Fig. 4

Performance evaluation for an interconnection with f = 8.5 mm and p = 125 μm for different lens apertures (γ = 0.05, τ = 1).

Fig. 5
Fig. 5

Maximum channel density for different f/# values at different interconnection distances (γ = 0.05, τ = 1). (a) Pitch = 125 μm and (b) pitch = 62.5 μm.

Fig. 6
Fig. 6

Lens size for different f/# values at different interconnection distances (γ = 0.05, τ = 1). (a) pitch = 125 μm and (b) pitch = 62.5 μm.

Fig. 7
Fig. 7

Graphical comparison between the channel densities of cluster links with different pitches and the maximum lens-to-waist microlens system.

Fig. 8
Fig. 8

Impact of VCSEL modal performance on channel density for f/3 relay lenses (γ = 0.05, τ = 1).

Fig. 9
Fig. 9

Impact of including the oversize factor τ a on the channel density and misalignment tolerance. (a) Interconnect distance = 42.5 mm, γ = 0.05, clusters of 8 × 8 channels with pitch = 125 μm, (b) clusters of 16 × 16 channels with pitch = 62.5 μm.

Fig. 10
Fig. 10

Optimum link parameters for a system having 2500 channels on a 125 μm pitch relayed by f/6 lenses.

Tables (1)

Tables Icon

Table 1 Different Configurations to Propagate 1024 Channels over a Distance of 42.5 mm

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

ϕr=modϕ0+2πλf-n2f2+r2, 2π,
ωxz=ω0x1+zλMx2πω0x221/2,
fμ=πpω03τλM2.
h1=hin+f tan θin,
sinθ1=sinθinn-h1n2f2+h12,
h2=h1+2nf tan θ1,
sin θout=nsin θ1-h1n2f2+h12,
hout=h2+f tan θout,
θin=32ωLf,
ωL=ω11+λM2fπω1221/2.
θin=92τλM2pπ.
ε=3hin2 sin θinfn2.
γ=exp - p22ω2.
εmax=3p4-2lnγ-p2τ.
hab=nfεmax6 sin θin.
Dab=2hab+2f tan θin.
Df/#=2f2f/#,
hf/#=Df/#-2f tan θin2.
N=floorminhab, hf/#p+12,
D=ceilminhab, hf/#+f tan θinp2p2,
Channel density=ND.
δ=2Δx,y+2fn tan ϕ,
δmax=14 εp-pτ.

Metrics