Abstract

We present a technique to estimate the pose of a three-dimensional object from a two-dimensional view. We first compute the correlation between the unknown image and several synthetic-discriminant-function filters constructed with known views of the object. We consider both linear and nonlinear correlations. The filters are constructed in such a way that the obtained correlation values depend on the pose parameters. We show that this dependence is not perfectly linear, in particular for nonlinear correlation. Therefore we use a two-layer neural network to retrieve the pose parameters from the correlation values. We demonstrate the technique by simultaneously estimating the in-plane and out-of-plane orientations of an airplane within an 8-deg portion. We show that a nonlinear correlation is necessary to identify the object and also to estimate its pose. On the other hand, linear correlation is more accurate and more robust. A combination of linear and nonlinear correlations gives the best results.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
Spatial-temporal correlation filter for in-plane distortion invariance

Abhijit Mahalanobis, B. V. K. Vijaya Kumar, and David Casasent
Appl. Opt. 25(23) 4466-4472 (1986)

Synthetic discriminant function filter employing nonlinear space-domain preprocessing on bandpass-filtered images

Lamia S. Jamal-Aldin, Rupert C. D. Young, and Chris R. Chatwin
Appl. Opt. 37(11) 2051-2062 (1998)

Nonlinear rotation-invariant pattern recognition by use of the optical morphological correlation

Pascuala Garcia-Martinez, Carlos Ferreira, Javier Garcia, and Henri H. Arsenault
Appl. Opt. 39(5) 776-781 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription