Abstract

Photopolymers are interesting materials for use in recording information in holography. We study the holographic behavior and stability of volume holograms recorded in poly(vinyl alcohol)–acrylamide photopolymers with and without a cross linker. Using a first-harmonic diffusion model, we analyze the residual monomer that remains when volume diffraction gratings are recorded in photopolymer materials. The importance of this residual monomer to the stability of the gratings is evaluated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Lessard, G. Manivannan, eds., Selected Papers on Photopolymers, Vol. 114 of SPIE Milestone Series (SPIE Optical Engineering Press, Bellingham, Wash., 1996).
  2. G. Zhao, P. Mourolis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939 (1994).
    [CrossRef]
  3. I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
    [CrossRef]
  4. J. H. Kwon, H. C. Hwang, K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651–1657 (1999).
    [CrossRef]
  5. S. Piazolla, B. J. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147–1157 (2000).
    [CrossRef]
  6. J. T. Sheridan, J. R. Lawrence, F. T. O’Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A 3, 477–488 (2001).
    [CrossRef]
  7. C. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. Álvarez, A. Beléndez, I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol-acrylamide-based photopolymer,” J. Opt. Soc. Am. B 20, 2052–2060 (2003).
    [CrossRef]
  8. S. Martin, P. E. L. G. Leclere, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
    [CrossRef]
  9. V. Weiss, E. Millul, A. Friesem, “Photopolymeric holographic recording media: in situ and real-time characterization,” in Holographic Materials II, T. J. Trout, ed.Proc. SPIE2688, 11–21 (1996).
  10. S. Blaya, L. Carretero, R. Mallavia, A. Fimia, M. Ulibarrena, D. Levy, “Optimization of an acrylamide-based dry film used for holographic recording,Appl. Opt. 37, 7604–7610 (1998).
    [CrossRef]
  11. C. García, A. Fimia, I. Pascual, “Diffraction efficiency and signal-to-noise ratio of diffuse-object holograms in real time in polyvinyl alcohol photopolymers,” Appl. Opt. 38, 5548–5551 (1999).
    [CrossRef]
  12. C. García, A. Fimia, I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of polymerization,” Appl. Phys. B 72, 311–316 (2001).
    [CrossRef]
  13. S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Temporal evolution of the angular response of a holographic diffraction grating in PVA/acrylamide photopolymer,” Opt. Express 11, 181–190 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  14. J. A. Jenney, “Holographic recording with photopolymers,” J. Opt. Soc. Am. 60, 1155–1161 (1970).
    [CrossRef]
  15. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  16. S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215, 263–269 (2003).
    [CrossRef]

2003

2001

C. García, A. Fimia, I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of polymerization,” Appl. Phys. B 72, 311–316 (2001).
[CrossRef]

J. T. Sheridan, J. R. Lawrence, F. T. O’Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A 3, 477–488 (2001).
[CrossRef]

2000

1999

1998

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

S. Blaya, L. Carretero, R. Mallavia, A. Fimia, M. Ulibarrena, D. Levy, “Optimization of an acrylamide-based dry film used for holographic recording,Appl. Opt. 37, 7604–7610 (1998).
[CrossRef]

1994

S. Martin, P. E. L. G. Leclere, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

G. Zhao, P. Mourolis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

1970

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Álvarez, M.

Aubrecht, I.

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Beléndez, A.

Blaya, S.

Carretero, L.

Fimia, A.

Friesem, A.

V. Weiss, E. Millul, A. Friesem, “Photopolymeric holographic recording media: in situ and real-time characterization,” in Holographic Materials II, T. J. Trout, ed.Proc. SPIE2688, 11–21 (1996).

Gallego, S.

García, C.

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Temporal evolution of the angular response of a holographic diffraction grating in PVA/acrylamide photopolymer,” Opt. Express 11, 181–190 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215, 263–269 (2003).
[CrossRef]

C. García, A. Fimia, I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of polymerization,” Appl. Phys. B 72, 311–316 (2001).
[CrossRef]

C. García, A. Fimia, I. Pascual, “Diffraction efficiency and signal-to-noise ratio of diffuse-object holograms in real time in polyvinyl alcohol photopolymers,” Appl. Opt. 38, 5548–5551 (1999).
[CrossRef]

Hwang, H. C.

Jenkins, B. J.

Jenney, J. A.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Koudela, I.

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Kwon, J. H.

Lawrence, J. R.

J. T. Sheridan, J. R. Lawrence, F. T. O’Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A 3, 477–488 (2001).
[CrossRef]

Leclere, P. E. L. G.

S. Martin, P. E. L. G. Leclere, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Levy, D.

Lion, Y. F.

S. Martin, P. E. L. G. Leclere, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Mallavia, R.

Márquez, A.

Martin, S.

S. Martin, P. E. L. G. Leclere, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Miler, M.

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Millul, E.

V. Weiss, E. Millul, A. Friesem, “Photopolymeric holographic recording media: in situ and real-time characterization,” in Holographic Materials II, T. J. Trout, ed.Proc. SPIE2688, 11–21 (1996).

Mourolis, P.

G. Zhao, P. Mourolis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Neipp, C.

O’Neill, F. T.

J. T. Sheridan, J. R. Lawrence, F. T. O’Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A 3, 477–488 (2001).
[CrossRef]

Ortuño, M.

Pascual, I.

Piazolla, S.

Sheridan, J. T.

J. T. Sheridan, J. R. Lawrence, F. T. O’Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A 3, 477–488 (2001).
[CrossRef]

Toal, V.

S. Martin, P. E. L. G. Leclere, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Ulibarrena, M.

Weiss, V.

V. Weiss, E. Millul, A. Friesem, “Photopolymeric holographic recording media: in situ and real-time characterization,” in Holographic Materials II, T. J. Trout, ed.Proc. SPIE2688, 11–21 (1996).

Woo, K. C.

Zhao, G.

G. Zhao, P. Mourolis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Appl. Opt.

Appl. Phys. B

C. García, A. Fimia, I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of polymerization,” Appl. Phys. B 72, 311–316 (2001).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

J. Mod. Opt.

G. Zhao, P. Mourolis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

I. Aubrecht, M. Miler, I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

J. Opt. A

J. T. Sheridan, J. R. Lawrence, F. T. O’Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A 3, 477–488 (2001).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Commun.

S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215, 263–269 (2003).
[CrossRef]

Opt. Eng.

S. Martin, P. E. L. G. Leclere, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Opt. Express

Other

R. A. Lessard, G. Manivannan, eds., Selected Papers on Photopolymers, Vol. 114 of SPIE Milestone Series (SPIE Optical Engineering Press, Bellingham, Wash., 1996).

V. Weiss, E. Millul, A. Friesem, “Photopolymeric holographic recording media: in situ and real-time characterization,” in Holographic Materials II, T. J. Trout, ed.Proc. SPIE2688, 11–21 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Experimental setup: BS, beam splitter; M i , mirrors; SF i , spatial filters; L i , lenses; D i , diaphragms; PC, personal computer.

Fig. 2
Fig. 2

Transmission efficiency versus time for an 87-μm-thick type 1 photopolymer during holographic recording.

Fig. 3
Fig. 3

Monomer concentration (Φm) divided by initial monomer concentration (Φmo¯) and polymer concentration (Φp) divided by initial monomer concentration as a function of time for an 87-μm-thick type 1 photopolymer plate during holographic recording.

Fig. 4
Fig. 4

TE as a function of the angle at reconstruction immediately after exposure for an 87-μm-thick type 1 photopolymer (Δn = 0.0030).

Fig. 5
Fig. 5

Refractive-index modulation divided by the index modulation obtained immediately after recording as a function of time when the grating is kept in the dark.

Fig. 6
Fig. 6

Refractive-index modulation divided by the index modulation obtained immediately after recording as a function of time when the grating is kept in the light.

Fig. 7
Fig. 7

Refractive-index modulation divided by the index modulation obtained immediately after recording as a function of time when the grating is exposed to light after 1100 h in the dark.

Fig. 8
Fig. 8

Transmission efficiency versus time for a 77-μm-thick type 2 photopolymer.

Fig. 9
Fig. 9

Monomer concentration (Φm) divided by initial monomer concentration (Φmo¯) and polymer concentration (Φp) divided by initial monomer concentration as a function of time for a 77-μm-thick type 2 photopolymer plate.

Fig. 10
Fig. 10

TE as a function of angle at reconstruction immediately after exposure for a 77-μm-thick type 2 photopolymer (Δn = 0.0035).

Fig. 11
Fig. 11

Refractive-index modulation divided by the index modulation obtained immediately after recording as a function of time when the grating is kept in the light.

Fig. 12
Fig. 12

Transmission efficiency versus time for a 53-μm-thick type 2 photopolymer.

Fig. 13
Fig. 13

Monomer concentration (Φm) divided by initial monomer concentration (Φmo¯) and polymer concentration (Φp) divided by initial monomer concentration as a function of time for a 53-μm-thick type 2 photopolymer plate.

Fig. 14
Fig. 14

Refractive-index modulation divided by the index modulation obtained immediately after recording as a function of time when the grating is kept in the light.

Tables (2)

Tables Icon

Table 1 Components of the Photopolymerizable Solution without a Cross Linker (Type 1)

Tables Icon

Table 2 Components of the Photopolymerizable Solution with a Cross Linker (Type 2)

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ϕmt=-kRtIxϕmx, t+x D x ϕmx, t,
ϕpt=kRtIxϕmx, t,
kRt=k0 exp-φt.
Ix=I01+m cosKgx,
ϕmx, t=ϕ0mt-ϕ1mtcosKgx.
ϕpx, t=ϕ0pt+ϕ1ptcosKgx.
t ϕmx, t=-kRtI01+m cosKgxϕ0m-ϕ1mcosKgx+ϕ1mτDcosKgx,
t ϕpx, t=kRtI01+m cosKgxϕ0m-ϕ1mcosKgx.
n1=ndark2+223ndark-nm2-1nm2+2-nb2-1nb2+2ϕ1m+np2-1np2+2-nb2-1nb2+2ϕ1p,
dϕ0mdt=-kRtI0ϕ0m-12 ϕ1m,
dϕ1mdt=kRtI0ϕ0m-ϕ1m-ϕ1mτD,
dϕ0pdt=kRtI0ϕ0m-12 ϕ1m,
dϕ1pdt=kRtI0ϕ0m-ϕ1m.

Metrics