Abstract

Methods of imaging phase objects are considered. First the square-root filter is inferred from a definition of fractional-order derivatives given in terms of the integration of a fractional order called the Riemann-Liouville integral. Then we present a comparison of the performance of three frequency-domain real filters: square root, Foucault, and Hoffman. The phase-object imaging method is useful as a phase-shift measurement technique under the condition that the output image intensity is a known function of object phase. For the square-root filter it is the first derivative of the object phase function. The Foucault filter, in spite of its position, gives output image intensities expressed by Hilbert transforms. The output image intensity obtained with the Hoffman filter is not expressed by an analytical formula. The performance of the filters in a 4f imaging system with coherent illumination is simulated by use of VirtualLab 1.0 software.

© 2003 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription