Abstract

A method for measuring the distributions of light in the biological tissue phantom Intralipid by use of an optical fiber is presented and measurements of distributions of light in Intralipid-10% suspensions at 650 nm are described. This approach is complementary to that in which an optical fiber with an isotropic tip detects the distribution of light in tissue phantoms. The characteristics of the distance-dependent intensity of scattering light in different directions were revealed by the experimental results; the effects of the optical parameters and of the radius of the incident beam on the distributions of light in tissue phantoms were given; and the experimental results were analyzed by the diffusion theory. These studies will help in further understanding of the scattering characteristics of tissue.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Preuss, A. E. Profio, “Optical properties of mammalian tissue: introduction by the feature editors,” Appl. Opt. 28, 2207–2209 (1989).
    [CrossRef] [PubMed]
  2. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  3. C. J. M. Moes, M. J. C. van Gemert, “Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm,” Appl. Opt. 28, 2292–2296 (1989).
    [CrossRef] [PubMed]
  4. S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues. II. Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
    [CrossRef] [PubMed]
  5. H. J. van Staveren, C. J. M. Moes, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  6. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  7. A. Kienle, M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997).
    [CrossRef]
  8. L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photo transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  9. B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
    [CrossRef] [PubMed]
  10. L.-H. Wang, S. L. Jacques, “Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media,” J. Opt. Soc. Am. A 10, 1746–1752 (1993).
    [CrossRef]
  11. W. M. Star, J. P. A. Marijnissen, M. J. C. Van Gemert, “Light dosimetry in optical phantoms and in tissues. 1. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).
    [CrossRef] [PubMed]
  12. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318–2324 (1989).
    [CrossRef] [PubMed]
  13. N. Ghosh, S. K. Mohanty, S. K. Majumder, P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt. 40, 176–184 (2001).
    [CrossRef]

2001

1997

1995

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photo transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

1993

1991

1990

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989

1988

W. M. Star, J. P. A. Marijnissen, M. J. C. Van Gemert, “Light dosimetry in optical phantoms and in tissues. 1. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

1987

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

Andreola, S.

Bertoni, A.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Flock, S. T.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues. II. Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

Ghosh, N.

Gupta, P. K.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.

Jacques, S. L.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photo transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, “Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media,” J. Opt. Soc. Am. A 10, 1746–1752 (1993).
[CrossRef]

Kienle, A.

Majumder, S. K.

Marchesini, R.

Marijnissen, J. P. A.

W. M. Star, J. P. A. Marijnissen, M. J. C. Van Gemert, “Light dosimetry in optical phantoms and in tissues. 1. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

Melloni, E.

Moes, C. J. M.

Mohanty, S. K.

Patterson, M. S.

A. Kienle, M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997).
[CrossRef]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues. II. Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Preuss, L. E.

Profio, A. E.

Sichirollo, A. E.

Star, W. M.

W. M. Star, J. P. A. Marijnissen, M. J. C. Van Gemert, “Light dosimetry in optical phantoms and in tissues. 1. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

van Gemert, M. J. C.

C. J. M. Moes, M. J. C. van Gemert, “Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm,” Appl. Opt. 28, 2292–2296 (1989).
[CrossRef] [PubMed]

W. M. Star, J. P. A. Marijnissen, M. J. C. Van Gemert, “Light dosimetry in optical phantoms and in tissues. 1. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

van Staveren, H. J.

Wang, L.-H.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photo transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, “Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media,” J. Opt. Soc. Am. A 10, 1746–1752 (1993).
[CrossRef]

Welch, A. J.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wilson, B. C.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues. II. Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

Zheng, L.-Q.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photo transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Appl. Opt.

Comput. Methods Programs Biomed.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photo transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues. II. Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Photochem. Photobiol.

B. C. Wilson, M. S. Patterson, S. T. Flock, “Indirect versus direct techniques for the measurement of the optical properties of tissues,” Photochem. Photobiol. 46, 601–608 (1987).
[CrossRef] [PubMed]

Phys. Med. Biol.

W. M. Star, J. P. A. Marijnissen, M. J. C. Van Gemert, “Light dosimetry in optical phantoms and in tissues. 1. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

Other

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for determining the distribution of light in an Intralipid-10% suspension.

Fig. 2
Fig. 2

Detection of forward-scattering light.

Fig. 3
Fig. 3

Detection of horizontal-scattering light.

Fig. 4
Fig. 4

Detection of backscattering light.

Fig. 5
Fig. 5

Relative intensity I r as a function of distance z and radial direction ρ for Intralipid suspensions with scatting coefficients μ s1 and μ s2. The incident beam’s radius was 1.4 mm.

Fig. 6
Fig. 6

Relative intensity I r as a function of distance z and radial direction ρ for an Intralipid suspension with scatting coefficient μ s2. The incident beam’s radius was 7.5 mm.

Fig. 7
Fig. 7

Configuration of image sources of the extrapolated boundary condition.

Fig. 8
Fig. 8

Effect of reflection of the medium’s boundary on the change of I rh and I rb versus z.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Ir, ŝ=Irir, ŝ+Idr, ŝ,
Irir, ŝ=F0ρδωˆ-ωˆ0exp-μtz,
Idr, ŝ=ϕdr+34πFdr · ŝ,
ϕdr=4π Idr, ŝdω,
Fdr=4π Idr, ŝŝdω,
Fdr=μsgF0ρμtexp-μtzzˆ-4π3μt ϕdr,
ϕdρ, z=14πDexp-μeffz-z02+ρ21/2z-z02+ρ21/2-exp-μeffz+z0+2zb2+ρ21/2z+z0+2zb2+ρ21/2,
Ir, ŝIdr, ŝϕr.
pcos θ=1-g221+g2-2g con θ3/2,
Irf  pcos0ϕdz, ρ,
Irh  pcosπ/2ϕdz, ρ,
Irb  pcosπϕdz, ρ.
ϕr=crexp-μeffr,

Metrics