Abstract

We separated the component spatial patterns of frequency-dependent absorption in chemicals and frequency-independent components such as plastic, paper, and measurement noise in terahertz (THz) spectroscopic images, using known spectral curves. Our measurement system, which uses a widely tunable coherent THz-wave parametric oscillator source, can image at a specific frequency in the range 1–2 THz. The component patterns of chemicals can easily be extracted by use of the frequency-independent components. This method could be successfully used for nondestructive inspection for the detection of illegal drugs and devices of bioterrorism concealed, e.g., inside mail and packages.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. S. Hartwick, D. T. Hodges, D. H. Barker, F. B. Foote, “Far infrared imagery,” Appl. Opt. 15, 1919–1922 (1976).
    [CrossRef] [PubMed]
  2. T. S. Hartwick, “Far infrared imaging techniques for law enforcement applications,” in Optics in Security and Law Enforcement, S. S. Nudelman, J. C. Richmond, C. M. Freeman, eds., Proc. SPIE108, 139–140 (1977).
    [CrossRef]
  3. A. A. Lash, D. N. Yundev, “Submillimeter wave imaging with a pyroelectric TV camera,” Int. J. Infrared Millim. Waves 5, 489–505 (1984).
    [CrossRef]
  4. B. B. Hu, M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1719 (1995).
    [CrossRef] [PubMed]
  5. D. M. Mittleman, S. Hunsche, L. Boivin, M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
    [CrossRef] [PubMed]
  6. S. Hunsche, M. Koch, I. Brener, M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
    [CrossRef]
  7. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advantages in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
    [CrossRef]
  8. T. Löffler, T. Bauer, K. Siebert, H. G. Roskos, A. Fitzgerald, S. Czasch, “Terahertz dark-field imaging of biomedical tissue,” Opt. Express 9, 616–621 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  9. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
    [CrossRef]
  10. B. Ferguson, S. Wang, D. Gray, D. Abbot, X.-C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002).
    [CrossRef]
  11. Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” submitted to Appl. Phys. Lett.
  12. K. Kawase, J. Shikata, H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
    [CrossRef]
  13. S. Kawata, K. Sasaki, S. Minami, “Component analysis of spatial and spectral patterns in multispectral images. I. Basis,” J. Opt. Soc. Am. A 4, 2101–2106 (1987).
    [CrossRef] [PubMed]
  14. K. Sasaki, S. Kawata, S. Minami, “Component analysis of spatial and spectral patterns in multispectral images. II. Entropy minimization,” J. Opt. Soc. Am. A 6, 73–79 (1989).
    [CrossRef] [PubMed]

2002

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

B. Ferguson, S. Wang, D. Gray, D. Abbot, X.-C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312–1314 (2002).
[CrossRef]

K. Kawase, J. Shikata, H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[CrossRef]

2001

1999

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advantages in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

1998

S. Hunsche, M. Koch, I. Brener, M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

1997

1995

1989

1987

1984

A. A. Lash, D. N. Yundev, “Submillimeter wave imaging with a pyroelectric TV camera,” Int. J. Infrared Millim. Waves 5, 489–505 (1984).
[CrossRef]

1976

Abbot, D.

Baraniuk, R. G.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advantages in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Barker, D. H.

Bauer, T.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

T. Löffler, T. Bauer, K. Siebert, H. G. Roskos, A. Fitzgerald, S. Czasch, “Terahertz dark-field imaging of biomedical tissue,” Opt. Express 9, 616–621 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Boivin, L.

Brener, I.

S. Hunsche, M. Koch, I. Brener, M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Czasch, S.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

T. Löffler, T. Bauer, K. Siebert, H. G. Roskos, A. Fitzgerald, S. Czasch, “Terahertz dark-field imaging of biomedical tissue,” Opt. Express 9, 616–621 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Ferguson, B.

Fitzgerald, A.

Foote, F. B.

Gray, D.

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advantages in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Hartwick, T. S.

T. S. Hartwick, D. T. Hodges, D. H. Barker, F. B. Foote, “Far infrared imagery,” Appl. Opt. 15, 1919–1922 (1976).
[CrossRef] [PubMed]

T. S. Hartwick, “Far infrared imaging techniques for law enforcement applications,” in Optics in Security and Law Enforcement, S. S. Nudelman, J. C. Richmond, C. M. Freeman, eds., Proc. SPIE108, 139–140 (1977).
[CrossRef]

Hodges, D. T.

Hu, B. B.

Hunsche, S.

S. Hunsche, M. Koch, I. Brener, M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

D. M. Mittleman, S. Hunsche, L. Boivin, M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
[CrossRef] [PubMed]

Ikari, T.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” submitted to Appl. Phys. Lett.

Ishikawa, Y.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” submitted to Appl. Phys. Lett.

Ito, H.

K. Kawase, J. Shikata, H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[CrossRef]

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” submitted to Appl. Phys. Lett.

Kawase, K.

K. Kawase, J. Shikata, H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[CrossRef]

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” submitted to Appl. Phys. Lett.

Kawata, S.

Koch, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advantages in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

S. Hunsche, M. Koch, I. Brener, M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Lash, A. A.

A. A. Lash, D. N. Yundev, “Submillimeter wave imaging with a pyroelectric TV camera,” Int. J. Infrared Millim. Waves 5, 489–505 (1984).
[CrossRef]

Leonhardt, R.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

Löffler, T.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

T. Löffler, T. Bauer, K. Siebert, H. G. Roskos, A. Fitzgerald, S. Czasch, “Terahertz dark-field imaging of biomedical tissue,” Opt. Express 9, 616–621 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Minami, S.

Minamide, H.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” submitted to Appl. Phys. Lett.

Mittleman, D. M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advantages in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

D. M. Mittleman, S. Hunsche, L. Boivin, M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).
[CrossRef] [PubMed]

Neelamani, R.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advantages in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Nuss, M. C.

Quast, H.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

Roskos, H. G.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

T. Löffler, T. Bauer, K. Siebert, H. G. Roskos, A. Fitzgerald, S. Czasch, “Terahertz dark-field imaging of biomedical tissue,” Opt. Express 9, 616–621 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Rudd, J. V.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advantages in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Sasaki, K.

Shikata, J.

K. Kawase, J. Shikata, H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[CrossRef]

Siebert, K.

Siebert, K. J.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

Thomson, M.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

Wang, S.

Watanabe, Y.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” submitted to Appl. Phys. Lett.

Yundev, D. N.

A. A. Lash, D. N. Yundev, “Submillimeter wave imaging with a pyroelectric TV camera,” Int. J. Infrared Millim. Waves 5, 489–505 (1984).
[CrossRef]

Zhang, X.-C.

Appl. Opt.

Appl. Phys. B

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, “Recent advantages in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Appl. Phys. Lett.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

Int. J. Infrared Millim. Waves

A. A. Lash, D. N. Yundev, “Submillimeter wave imaging with a pyroelectric TV camera,” Int. J. Infrared Millim. Waves 5, 489–505 (1984).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D

K. Kawase, J. Shikata, H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[CrossRef]

Opt. Commun.

S. Hunsche, M. Koch, I. Brener, M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Other

T. S. Hartwick, “Far infrared imaging techniques for law enforcement applications,” in Optics in Security and Law Enforcement, S. S. Nudelman, J. C. Richmond, C. M. Freeman, eds., Proc. SPIE108, 139–140 (1977).
[CrossRef]

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” submitted to Appl. Phys. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the THz spectroscopic imaging system with a THz-wave parametric oscillator.

Fig. 2
Fig. 2

Schematic of Eq. (1).

Fig. 3
Fig. 3

Spectral curves of 5-aspirin and palatinose. I 0 and I t are incident and transmitted intensities, respectively.

Fig. 4
Fig. 4

Schematic of the imaging sample.

Fig. 5
Fig. 5

Transillumination THz images at (a) 1.3, (b) 1.4, (c) 1.5, (d) 1.6, (e) 1.7, (f) 1.8, (g) 1.9, and (h) 2.0 THz.

Fig. 6
Fig. 6

Component spatial patterns: (a) palatinose, (b) 5-aspirin.

Fig. 7
Fig. 7

Spectral data set of three components.

Fig. 8
Fig. 8

Component spatial patterns: (a) palatinose, (b) 5-aspirin, (c) frequency-independent component.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I=SP,
P = StS-1 St F,

Metrics