Abstract

The diattenuation spectrum of the retinal nerve fiber layer (RNFL) reflectance has been predicted to depend strongly on the relative refractive index (m) of light-scattering cylinders. To constrain the values of m, diattenuation of the RNFL reflectance of isolated rat retina was measured with a multispectral imaging micropolarimeter. The RNFL reflection has very weak intrinsic diattenuation at all wavelengths (400–830 nm), which rejects all values of m ≥ 1.03. Degree of polarization (DOP) for reflection from the RNFL was also measured. DOP was close to unity at all wavelengths, which indicates that the RNFL is a polarization-preserving reflector.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Pollock, N. R. Miller, “The retinal nerve fiber layer,” Int. Ophthalmol. Clin. 26, 201–221 (1986).
    [CrossRef] [PubMed]
  2. A. W. Dreher, K. Reiter, “Retinal laser ellipsometry—a new method for measuring the retinal nerve-fiber layer thickness distribution,” Clin. Vis. Sci. 7, 481–488 (1992).
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  4. J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
    [CrossRef] [PubMed]
  5. R. O. Burk, H. E. Volcker, “Current imaging of the optic disk and retinal nerve fiber layer,” Curr. Opin. Ophthalmol. 7, 99–108 (1996).
    [CrossRef] [PubMed]
  6. D. S. Greenfield, “Optic nerve and retinal nerve fiber layer analyzers in glaucoma,” Curr. Opin. Ophthalmol. 13, 68–76 (2002).
    [CrossRef] [PubMed]
  7. R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
    [CrossRef] [PubMed]
  8. R. W. Knighton, Q. Zhou, “The relation between reflectance and thickness of the retinal nerve fiber layer,” J. Glaucoma 4, 117–123 (1995).
    [CrossRef] [PubMed]
  9. R. W. Knighton, X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40, 639–647 (1999).
    [PubMed]
  10. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).
    [CrossRef]
  11. Q. Zhou, R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt. 36, 2273–2285 (1997).
    [CrossRef] [PubMed]
  12. X.-R. Huang, R. W. Knighton, “Theoretical model of the polarization properties of the retinal nerve fiber layer in reflection,” Appl. Opt. 42, 5726–5736 (2003).
    [CrossRef] [PubMed]
  13. R. A. Chipman, “Polarimetry,” in Handbook of Optics, 2nd ed., M. Bass, E. W. van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), pp. 22.21–22.37.
  14. G. J. van Blokland, “Ellipsometry of the human retina in vivo: preservation of polarization,” J. Opt. Soc. Am. A 2, 72–75 (1985).
    [CrossRef] [PubMed]
  15. A. W. Dreher, K. Reiter, R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve-fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31, 3730–3735 (1992).
    [CrossRef] [PubMed]
  16. X.-R. Huang, R. W. Knighton, “Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter,” J. Biomed. Opt. 7, 199–204 (2002).
    [CrossRef] [PubMed]
  17. X.-R. Huang, “Polarization properties of the retinal nerve fiber layer investigated with multispectral imaging micropolarimetry,” Ph.D. dissertation (University of Miami, Coral Gables, Fla., 2000).
  18. P. S. Hauge, “Mueller matrix ellipsometry with imperfect compensators,” J. Opt. Soc. Am. 68, 1519–1528 (1978).
    [CrossRef]
  19. R. W. Knighton, X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8, 31–37 (1999).
    [CrossRef] [PubMed]
  20. R. W. Knighton, C. Baverez, A. Bhattacharya, “The directional reflectance of the retinal nerve fiber layer of the toad,” Invest. Ophthalmol. Vis. Sci. 33, 2603–2611 (1992).
    [PubMed]
  21. D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990).
  22. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  23. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  24. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, New York, 1993).
  25. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1989).
  26. A. M. Benoit, K. Naoun, V. Louis-Dorr, L. Mala, A. Raspiller, “Linear dichroism of the retinal nerve fiber layer expressed with Mueller matrices,” Appl. Opt. 40, 565–569 (2001).
    [CrossRef]
  27. R. W. Knighton, X.-R. Huang, Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39, 189–193 (1998).
    [PubMed]
  28. H. Sato, G. W. Ellis, S. Inoue, “Microtubular origin of mitotic spindle form birefringence,” J. Cell Biol. 67, 501–517 (1975).
    [CrossRef] [PubMed]
  29. D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19, 653–667 (1980).
    [PubMed]
  30. T. E. Ogden, “Nerve fiber layer astrocytes of the primate retina: morphology, distribution, and density,” Invest. Ophthalmol. Vis. Sci. 17, 499–510 (1978).
    [PubMed]

2003 (1)

2002 (3)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).
[CrossRef]

D. S. Greenfield, “Optic nerve and retinal nerve fiber layer analyzers in glaucoma,” Curr. Opin. Ophthalmol. 13, 68–76 (2002).
[CrossRef] [PubMed]

X.-R. Huang, R. W. Knighton, “Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter,” J. Biomed. Opt. 7, 199–204 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (2)

R. W. Knighton, X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8, 31–37 (1999).
[CrossRef] [PubMed]

R. W. Knighton, X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40, 639–647 (1999).
[PubMed]

1998 (1)

R. W. Knighton, X.-R. Huang, Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39, 189–193 (1998).
[PubMed]

1997 (1)

1996 (1)

R. O. Burk, H. E. Volcker, “Current imaging of the optic disk and retinal nerve fiber layer,” Curr. Opin. Ophthalmol. 7, 99–108 (1996).
[CrossRef] [PubMed]

1995 (2)

R. W. Knighton, Q. Zhou, “The relation between reflectance and thickness of the retinal nerve fiber layer,” J. Glaucoma 4, 117–123 (1995).
[CrossRef] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

1992 (3)

A. W. Dreher, K. Reiter, “Retinal laser ellipsometry—a new method for measuring the retinal nerve-fiber layer thickness distribution,” Clin. Vis. Sci. 7, 481–488 (1992).

R. W. Knighton, C. Baverez, A. Bhattacharya, “The directional reflectance of the retinal nerve fiber layer of the toad,” Invest. Ophthalmol. Vis. Sci. 33, 2603–2611 (1992).
[PubMed]

A. W. Dreher, K. Reiter, R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve-fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31, 3730–3735 (1992).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1990 (1)

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

1986 (1)

S. C. Pollock, N. R. Miller, “The retinal nerve fiber layer,” Int. Ophthalmol. Clin. 26, 201–221 (1986).
[CrossRef] [PubMed]

1985 (1)

1980 (1)

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19, 653–667 (1980).
[PubMed]

1978 (2)

T. E. Ogden, “Nerve fiber layer astrocytes of the primate retina: morphology, distribution, and density,” Invest. Ophthalmol. Vis. Sci. 17, 499–510 (1978).
[PubMed]

P. S. Hauge, “Mueller matrix ellipsometry with imperfect compensators,” J. Opt. Soc. Am. 68, 1519–1528 (1978).
[CrossRef]

1975 (1)

H. Sato, G. W. Ellis, S. Inoue, “Microtubular origin of mitotic spindle form birefringence,” J. Cell Biol. 67, 501–517 (1975).
[CrossRef] [PubMed]

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1989).

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1989).

Baverez, C.

R. W. Knighton, C. Baverez, A. Bhattacharya, “The directional reflectance of the retinal nerve fiber layer of the toad,” Invest. Ophthalmol. Vis. Sci. 33, 2603–2611 (1992).
[PubMed]

Benoit, A. M.

Bhattacharya, A.

R. W. Knighton, C. Baverez, A. Bhattacharya, “The directional reflectance of the retinal nerve fiber layer of the toad,” Invest. Ophthalmol. Vis. Sci. 33, 2603–2611 (1992).
[PubMed]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Burk, R. O.

R. O. Burk, H. E. Volcker, “Current imaging of the optic disk and retinal nerve fiber layer,” Curr. Opin. Ophthalmol. 7, 99–108 (1996).
[CrossRef] [PubMed]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Chipman, R. A.

R. A. Chipman, “Polarimetry,” in Handbook of Optics, 2nd ed., M. Bass, E. W. van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), pp. 22.21–22.37.

Coleman, A.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Collett, E.

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, New York, 1993).

de Boer, J. F.

Dreher, A. W.

A. W. Dreher, K. Reiter, R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve-fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31, 3730–3735 (1992).
[CrossRef] [PubMed]

A. W. Dreher, K. Reiter, “Retinal laser ellipsometry—a new method for measuring the retinal nerve-fiber layer thickness distribution,” Clin. Vis. Sci. 7, 481–488 (1992).

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Ellis, G. W.

H. Sato, G. W. Ellis, S. Inoue, “Microtubular origin of mitotic spindle form birefringence,” J. Cell Biol. 67, 501–517 (1975).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Greenfield, D. S.

D. S. Greenfield, “Optic nerve and retinal nerve fiber layer analyzers in glaucoma,” Curr. Opin. Ophthalmol. 13, 68–76 (2002).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hauge, P. S.

Hee, M. R.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hertzmark, E.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, X.-R.

X.-R. Huang, R. W. Knighton, “Theoretical model of the polarization properties of the retinal nerve fiber layer in reflection,” Appl. Opt. 42, 5726–5736 (2003).
[CrossRef] [PubMed]

X.-R. Huang, R. W. Knighton, “Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter,” J. Biomed. Opt. 7, 199–204 (2002).
[CrossRef] [PubMed]

R. W. Knighton, X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40, 639–647 (1999).
[PubMed]

R. W. Knighton, X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8, 31–37 (1999).
[CrossRef] [PubMed]

R. W. Knighton, X.-R. Huang, Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39, 189–193 (1998).
[PubMed]

X.-R. Huang, “Polarization properties of the retinal nerve fiber layer investigated with multispectral imaging micropolarimetry,” Ph.D. dissertation (University of Miami, Coral Gables, Fla., 2000).

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Inoue, S.

H. Sato, G. W. Ellis, S. Inoue, “Microtubular origin of mitotic spindle form birefringence,” J. Cell Biol. 67, 501–517 (1975).
[CrossRef] [PubMed]

Izatt, J. A.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

Kliger, D. S.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990).

Knighton, R. W.

X.-R. Huang, R. W. Knighton, “Theoretical model of the polarization properties of the retinal nerve fiber layer in reflection,” Appl. Opt. 42, 5726–5736 (2003).
[CrossRef] [PubMed]

X.-R. Huang, R. W. Knighton, “Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter,” J. Biomed. Opt. 7, 199–204 (2002).
[CrossRef] [PubMed]

R. W. Knighton, X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8, 31–37 (1999).
[CrossRef] [PubMed]

R. W. Knighton, X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40, 639–647 (1999).
[PubMed]

R. W. Knighton, X.-R. Huang, Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39, 189–193 (1998).
[PubMed]

Q. Zhou, R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt. 36, 2273–2285 (1997).
[CrossRef] [PubMed]

R. W. Knighton, Q. Zhou, “The relation between reflectance and thickness of the retinal nerve fiber layer,” J. Glaucoma 4, 117–123 (1995).
[CrossRef] [PubMed]

R. W. Knighton, C. Baverez, A. Bhattacharya, “The directional reflectance of the retinal nerve fiber layer of the toad,” Invest. Ophthalmol. Vis. Sci. 33, 2603–2611 (1992).
[PubMed]

Lewis, J. W.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990).

Lin, C. P.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Louis-Dorr, V.

Mala, L.

Miller, N. R.

S. C. Pollock, N. R. Miller, “The retinal nerve fiber layer,” Int. Ophthalmol. Clin. 26, 201–221 (1986).
[CrossRef] [PubMed]

Naoun, K.

Ogden, T. E.

T. E. Ogden, “Nerve fiber layer astrocytes of the primate retina: morphology, distribution, and density,” Invest. Ophthalmol. Vis. Sci. 17, 499–510 (1978).
[PubMed]

Park, B. H.

Pedut-Kloizman, T.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

Pierce, M. C.

Pollock, S. C.

S. C. Pollock, N. R. Miller, “The retinal nerve fiber layer,” Int. Ophthalmol. Clin. 26, 201–221 (1986).
[CrossRef] [PubMed]

Puliafito, C. A.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Quigley, H.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Randall, C. E.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990).

Raspiller, A.

Reiter, K.

A. W. Dreher, K. Reiter, R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve-fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31, 3730–3735 (1992).
[CrossRef] [PubMed]

A. W. Dreher, K. Reiter, “Retinal laser ellipsometry—a new method for measuring the retinal nerve-fiber layer thickness distribution,” Clin. Vis. Sci. 7, 481–488 (1992).

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Sato, H.

H. Sato, G. W. Ellis, S. Inoue, “Microtubular origin of mitotic spindle form birefringence,” J. Cell Biol. 67, 501–517 (1975).
[CrossRef] [PubMed]

Schuman, J. S.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Shaw, B.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

van Blokland, G. J.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

Volcker, H. E.

R. O. Burk, H. E. Volcker, “Current imaging of the optic disk and retinal nerve fiber layer,” Curr. Opin. Ophthalmol. 7, 99–108 (1996).
[CrossRef] [PubMed]

Weinreb, R. N.

A. W. Dreher, K. Reiter, R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve-fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31, 3730–3735 (1992).
[CrossRef] [PubMed]

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Williams, D. R.

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19, 653–667 (1980).
[PubMed]

Wong, C.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

Zhou, Q.

R. W. Knighton, X.-R. Huang, Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39, 189–193 (1998).
[PubMed]

Q. Zhou, R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt. 36, 2273–2285 (1997).
[CrossRef] [PubMed]

R. W. Knighton, Q. Zhou, “The relation between reflectance and thickness of the retinal nerve fiber layer,” J. Glaucoma 4, 117–123 (1995).
[CrossRef] [PubMed]

Appl. Opt. (4)

Arch. Ophthalmol. (2)

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586–596 (1995).
[CrossRef] [PubMed]

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Clin. Vis. Sci. (1)

A. W. Dreher, K. Reiter, “Retinal laser ellipsometry—a new method for measuring the retinal nerve-fiber layer thickness distribution,” Clin. Vis. Sci. 7, 481–488 (1992).

Curr. Opin. Ophthalmol. (2)

R. O. Burk, H. E. Volcker, “Current imaging of the optic disk and retinal nerve fiber layer,” Curr. Opin. Ophthalmol. 7, 99–108 (1996).
[CrossRef] [PubMed]

D. S. Greenfield, “Optic nerve and retinal nerve fiber layer analyzers in glaucoma,” Curr. Opin. Ophthalmol. 13, 68–76 (2002).
[CrossRef] [PubMed]

Int. Ophthalmol. Clin. (1)

S. C. Pollock, N. R. Miller, “The retinal nerve fiber layer,” Int. Ophthalmol. Clin. 26, 201–221 (1986).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (5)

R. W. Knighton, X.-R. Huang, Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39, 189–193 (1998).
[PubMed]

R. W. Knighton, X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40, 639–647 (1999).
[PubMed]

R. W. Knighton, C. Baverez, A. Bhattacharya, “The directional reflectance of the retinal nerve fiber layer of the toad,” Invest. Ophthalmol. Vis. Sci. 33, 2603–2611 (1992).
[PubMed]

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19, 653–667 (1980).
[PubMed]

T. E. Ogden, “Nerve fiber layer astrocytes of the primate retina: morphology, distribution, and density,” Invest. Ophthalmol. Vis. Sci. 17, 499–510 (1978).
[PubMed]

J. Biomed. Opt. (1)

X.-R. Huang, R. W. Knighton, “Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter,” J. Biomed. Opt. 7, 199–204 (2002).
[CrossRef] [PubMed]

J. Cell Biol. (1)

H. Sato, G. W. Ellis, S. Inoue, “Microtubular origin of mitotic spindle form birefringence,” J. Cell Biol. 67, 501–517 (1975).
[CrossRef] [PubMed]

J. Glaucoma (2)

R. W. Knighton, X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8, 31–37 (1999).
[CrossRef] [PubMed]

R. W. Knighton, Q. Zhou, “The relation between reflectance and thickness of the retinal nerve fiber layer,” J. Glaucoma 4, 117–123 (1995).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (7)

X.-R. Huang, “Polarization properties of the retinal nerve fiber layer investigated with multispectral imaging micropolarimetry,” Ph.D. dissertation (University of Miami, Coral Gables, Fla., 2000).

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, New York, 1993).

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1989).

R. A. Chipman, “Polarimetry,” in Handbook of Optics, 2nd ed., M. Bass, E. W. van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), pp. 22.21–22.37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the multispectral imaging micropolarimeter used in reflection mode. LS, light source; IF, interference filter; OF, fiber-optic cable; L1, L1′, and L2, lenses; P, linear polarizer; D, diaphragm; W, spherical chamber window; CB. chamber; SP. specimen; C′, linear retarder; A, linear analyzer; CCD: charge-coupled device.

Fig. 2
Fig. 2

(a) Reflectance image of isolated rat retina obtained at 440 nm (image size, 225 × 225 μm). Nerve fiber bundles appear as bright stripes against the darker retinal background. Average pixel values of small areas selected on bundles (black box) and gaps between bundles (white boxes) were used to measure bundle reflectance. (b) Total reflectance of bundle areas includes the reflectance from the bundles (R b) and the underlying retina (Rg′). The latter was estimated from the reflectance of the gap areas (R g). I i, incident intensity.

Fig. 3
Fig. 3

Geometry of light scattering by a cylinder. Incident and scattered rays are shown by the arrows. The scattered light is confined to a conical sheet coaxial with the cylinder axis. The apex angle of the cone is twice the angle between the cylinder axis and the incident ray. The incident plane is defined by the incident ray and the cylinder axis. The scattering plane for an observer at Q is defined by point Q and the cylinder axis. Cylindrical scattering is specified by two angles, incident angle ξ between the incident ray and a plane perpendicular to the cylinder and scattering angle ϕ between the incident and the scattering planes, as shown. The angle between the incident and the scattered rays is denoted by θ.

Fig. 4
Fig. 4

Diattenuation of a glass slide in solution measured at several reflection angles. Filled circles: measured Diat. Solid curve: Diat calculated according to Fresnel’s reflection equation. Diat = 1 at the Brewster angle. Dashed curve: the R–G limit. Vertical bars: estimated error of the R–G limit due to the uncertainties of mechanical settings at each measuring angle. The estimated errors of the measured Diat were smaller than the symbol size.

Fig. 5
Fig. 5

Diat spectrum of one bundle in a fixed retina measured at ξ = 21°, ϕ = 179°. Filled circles with error bars: measured Diat and estimated measurement error. Solid horizontal line: R–G limit; error bar at 740 nm: estimated uncertainty in R–G limit. Short horizontal lines: diattenuation of thin fibrils with the indicated m t. Curved lines: diattenuation calculated from the RNFL reflection model with the indicated m T; dash-dotted curves, m t = 1.08; dashed curves, m t = 1.001. Dotted line: Diat of the fibril-only model that best fit the data (see text); m t = 1.004 ± 0.003.

Fig. 6
Fig. 6

Diat spectra of one bundle in a living retina measured at ξ = 23°, ϕ = 179°. Open symbols: four spectra obtained over a 40-min period. Filled circles: mean of the four spectra. The other lines are the same as those in Fig. 4. The fibril-only fit yielded m t = 1.001 ± 0.009.

Tables (2)

Tables Icon

Table 1 DOP Determined by Use of Stokes Vector Measurements

Tables Icon

Table 2 DOP Determined by Use of Extinction Measurements

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S=D-1R,
Diat=m122+m132½m11.
G=1 cos2psin2p 0T,
R=KDMG=Km111+m12m11cos2p+m13m11sin2p,
DOP=S12+S22+S32½S0,
DOP=1-ER1+ER=Imax-IminImax+Imin.

Metrics