Abstract

We propose a method to control the polarization of light by the electro-optic effect in periodically poled lithium niobate. A single integrated chip of Z-cut lithium niobate having two sections is used. The first section is not periodically poled, whereas the second section is. With an electric field applied along the Z axis of the first section and another electric field applied along the Y axis of the second section, light with an arbitrary elliptical polarization can be converted into a fixed linearly polarized state.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bains, “PPLN inspires new applications,” Laser Focus World 34, 16–19 (1998).
  2. G. A. Magel, M. M. Fejer, R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
    [CrossRef]
  3. J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through upconversion and quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72, 1808–1810 (1998).
    [CrossRef]
  4. Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, N. B. Ming, B. H. Feng, X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69, 3155–3157 (1996).
    [CrossRef]
  5. N. O’Brien, M. Missey, P. Powers, V. Dominic, K. L. Schepler, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett. 24, 1750–1752 (1999).
    [CrossRef]
  6. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
    [CrossRef]
  7. A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

1999 (1)

1998 (2)

S. Bains, “PPLN inspires new applications,” Laser Focus World 34, 16–19 (1998).

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through upconversion and quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72, 1808–1810 (1998).
[CrossRef]

1996 (1)

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, N. B. Ming, B. H. Feng, X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69, 3155–3157 (1996).
[CrossRef]

1990 (1)

G. A. Magel, M. M. Fejer, R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

Bains, S.

S. Bains, “PPLN inspires new applications,” Laser Focus World 34, 16–19 (1998).

Byer, R. L.

G. A. Magel, M. M. Fejer, R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

Chen, X. F.

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, N. B. Ming, B. H. Feng, X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69, 3155–3157 (1996).
[CrossRef]

Dominic, V.

Fejer, M. M.

G. A. Magel, M. M. Fejer, R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

Feng, B. H.

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, N. B. Ming, B. H. Feng, X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69, 3155–3157 (1996).
[CrossRef]

He, J. L.

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through upconversion and quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72, 1808–1810 (1998).
[CrossRef]

Lu, Y. L.

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through upconversion and quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72, 1808–1810 (1998).
[CrossRef]

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, N. B. Ming, B. H. Feng, X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69, 3155–3157 (1996).
[CrossRef]

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through upconversion and quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72, 1808–1810 (1998).
[CrossRef]

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, N. B. Ming, B. H. Feng, X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69, 3155–3157 (1996).
[CrossRef]

Luo, G. P.

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through upconversion and quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72, 1808–1810 (1998).
[CrossRef]

Ma, J.

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through upconversion and quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72, 1808–1810 (1998).
[CrossRef]

Magel, G. A.

G. A. Magel, M. M. Fejer, R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through upconversion and quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72, 1808–1810 (1998).
[CrossRef]

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, N. B. Ming, B. H. Feng, X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69, 3155–3157 (1996).
[CrossRef]

Missey, M.

O’Brien, N.

Powers, P.

Schepler, K. L.

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

Xu, Z. Y.

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through upconversion and quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72, 1808–1810 (1998).
[CrossRef]

Xue, C. C.

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, N. B. Ming, B. H. Feng, X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69, 3155–3157 (1996).
[CrossRef]

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).

Zhang, X. L.

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, N. B. Ming, B. H. Feng, X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69, 3155–3157 (1996).
[CrossRef]

Zheng, J. J.

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through upconversion and quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72, 1808–1810 (1998).
[CrossRef]

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, N. B. Ming, B. H. Feng, X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69, 3155–3157 (1996).
[CrossRef]

Appl. Phys. Lett. (4)

G. A. Magel, M. M. Fejer, R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through upconversion and quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72, 1808–1810 (1998).
[CrossRef]

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, N. B. Ming, B. H. Feng, X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69, 3155–3157 (1996).
[CrossRef]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

Laser Focus World (1)

S. Bains, “PPLN inspires new applications,” Laser Focus World 34, 16–19 (1998).

Opt. Lett. (1)

Other (1)

A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the device. X, Y, and Z represent the principal axes of the original index ellipsoid. The arrows inside the PPLN indicate the spontaneous polarization directions.

Fig. 2
Fig. 2

Relationship between the applied electric field and the relative phase delay between the extraordinary and the ordinary waves for the first section of the device.

Fig. 3
Fig. 3

Power exchange relations between the extraordinary and the ordinary waves when the QPM condition is satisfied (Δβ = 0).

Fig. 4
Fig. 4

Relationship between the electric field applied to the PPLN section and the polarization angle of the linearly polarized light emitted from the first section of the device.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δn=nz-ny=ne-no- 12γ33ne3-γ13no3Ez,
Ain= cos ϕsin ϕexpiδ.
J= exp-iπne-no-12r33ne3-r13no3EzL1/λ00expiπne-no-12r33ne3-r13no3EzL1/λ.
Aout1=JAin=exp-iπne-no- 12r33ne3-r13no3EzL1/λ00expiπne-no- 12r33ne3-r13no3EzL1/λ×cos ϕsin ϕ expiδ =cos ϕ exp-iπne-no- 12r33ne3-r13no3EzL1/λsin ϕ expiδ+iπne-no- 12r33ne3-r13no3EzL1/λ.
θ γ51Ey1/ne2-1/no2,
dA1/dx=-iκA2 expiΔβx, dA2/dx=-iκ*A1 exp-iΔβx,
κ=- ω2cno2ne2γ51Eynonei1-cos mπmπm=1, 3, 5,,
Ain2=Aout1=cos ϕexp-imπsin ϕ=cos ϕ1sin ϕ1,
ϕ1=ϕm=0, ±2, -ϕm=±1, ±3, -π<ϕ1<π.
A1x=expiΔβ/2xcos sx-i Δβ2ssin sxcos ϕ1-i κssin sx sin ϕ1,
A2x=exp-iΔβ/2x-i κ*ssin sx cos ϕ1+cos sx+i Δβ2ssin sxsin ϕ1,
A1L2=cos sL2 cos ϕ1-sin sL2 sin ϕ1=cossL2+ϕ1,
A2L2=sin sL2 cos ϕ1+cos sL2 sin ϕ1=sinsL2+ϕ1.
A1L2=0, A2L2=1.

Metrics