Abstract

Wet-etch figuring utilizes free surface flows driven by surface tension gradients (the Marangoni effect) to confine and stabilize the size and shape of an etchant droplet attached to the underside of a glass surface. This droplet, or wetted zone, is translated on the surface, etching where it contacts and leaving behind no residue, to facilitate an etching-based small-tool figuring process that is free of mechanical and thermal stresses. The optic needs no backing plate, and its back side is free for inspection by optical means. When transmissive optics is figured, the optical thickness between the front and the rear surfaces of the optic is measured interferometrically and used in real time to control the local dwell time of the etchant zone. This truly closed-loop figuring process is robust, environmentally insensitive, and fully automated. It is particularly suited for figuring patterns such as phase plates, corrective elements, and optical flats on very thin (≪1-mm) substrates that are difficult to figure with traditional abrasive polishing methods.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Taylor, “Precision non-contact polishing tool,” U.S. patent5,591,068 (7January1997).
  2. P. C. Baker, “Advanced flow polishing of exotic optical materials,” in X-Ray/EUV Optics for Astronomy and Microscopy, R. B. Hoover, ed., Proc. SPIE1160, 263–270 (1989).
    [CrossRef]
  3. O. W. Fahnle, H. van Brug, H. J. Frankena, “Fluid jet polishing of optical surfaces,” Appl. Opt. 37, 6771–6773 (1998).
    [CrossRef]
  4. O. W. Fahnle, H. van Brug, “Fluid jet polishing: removal process analysis,” in Optical Fabrication and Testing, R. Geyl, J. Maxwell, eds., Proc. SPIE3739, 68–77 (1999).
    [CrossRef]
  5. S. D. Jacobs, W. Kordonski, I. V. Prokhorev, D. Gollini, G. R. Grodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).
  6. D. Golini, W. I. Kordonski, P. Dumas, S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” in Optical Manufacturing and Testing III, H. P. Stahl, ed., Proc. SPIE3782, 80–91 (1999).
    [CrossRef]
  7. S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).
  8. L. N. Allen, R. E. Keim, “An ion figuring system for large optic fabrication,” Selected Papers on Computer-Controlled Optical Surfacing, R. A. Jones, ed., Vol. 40 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1991), pp. 348–363.
  9. T. W. Drueding, S. C. Fawcett, S. R. Wilson, T. G. Bifano, “Ion beam figuring of small optical components,” Opt. Eng. 34, 3565–3571 (1995).
    [CrossRef]
  10. D. J. Smith, “The development of ion etched phase plates,” LLE Review 74, 71–91 (1998).
  11. X. Ding, Y. Yasui, Y. Kawaguchi, H. Niino, A. Yabe, “Laser-induced back-side wet-etching of fused silica with an aqueous solution containing organic molecules,” Appl. Phys. A 75, 437–440 (2002).
    [CrossRef]
  12. H. P. Meissner, A. S. Michaels, “Surface tensions of pure liquids and liquid mixtures,” Ind. Eng. Chem. 41, 2782–2787 (1949).
    [CrossRef]
  13. L. E. Scriven, C. V. Sternling, “The Marangoni effects,” Nature 187, 186–188 (1960).
    [CrossRef]
  14. A. F. M. Leenaars, J. A. M. Huethorst, J. J. van Oekel, “Marangoni drying: a new extremely clean drying process,” Langmuir 6, 1701–1703 (1990).
    [CrossRef]
  15. J. Marra, J. A. M. Huethorst, “Physical principles of Marangoni drying,” Langmuir 7, 2748–2755 (1991).
    [CrossRef]
  16. K. Wolke, B. Eitel, M. Schenkl, S. Rummelin, R. Schild, “Marangoni wafer drying avoids disadvantages,” Solid State Technol. 39, 87–90 (1996).
  17. J. A. Britten, “A moving-zone Marangoni drying process for critical cleaning and wet processing,” Solid State Technol. 40, 143–148 (1997).
  18. A. W. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976), Chap. 1.
  19. J. Schwider, O. Falkenstorfer, H. Schreiber, A. Zoller, N. Streibl, “New compensating 4-phase algorithm for phase shift interferometry,” Opt. Eng. 32, 183–1885 (1993).
    [CrossRef]
  20. A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.
  21. S. C. Barden, A. Camacho, H. Yarborough, “Post-polishing VPH gratings for improved wavefront performance,” in Specialized Optical Developments in Astronomy, E. Atad-Ettedgui, S. D’Odorico, eds., Proc. SPIE4842, 39–42 (2003).
    [CrossRef]
  22. R. D. Rallison, R. W. Rallison, L. D. Dickson, “Fabrication and testing of large area VPH gratings,” in Specialized Optical Developments in Astronomy, E. Atad-Ettedgui, S. D’Odorico, eds., Proc. SPIE4842, 10–21 (2003).
    [CrossRef]
  23. G. A. C. M. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28, 6261–6273 (1993).
    [CrossRef]
  24. J. K. Lawson, D. A. Aikens, R. E. English, C. R. Wolfe, “Power spectral density specifications for high-power laser systems,” in Specification, Production and Testing of Optical Components and Systems, A. E. Gee, J. House, eds., Proc. SPIE2775, 345–356 (1996).
    [CrossRef]

2002 (1)

X. Ding, Y. Yasui, Y. Kawaguchi, H. Niino, A. Yabe, “Laser-induced back-side wet-etching of fused silica with an aqueous solution containing organic molecules,” Appl. Phys. A 75, 437–440 (2002).
[CrossRef]

1999 (1)

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).

1998 (2)

D. J. Smith, “The development of ion etched phase plates,” LLE Review 74, 71–91 (1998).

O. W. Fahnle, H. van Brug, H. J. Frankena, “Fluid jet polishing of optical surfaces,” Appl. Opt. 37, 6771–6773 (1998).
[CrossRef]

1997 (1)

J. A. Britten, “A moving-zone Marangoni drying process for critical cleaning and wet processing,” Solid State Technol. 40, 143–148 (1997).

1996 (1)

K. Wolke, B. Eitel, M. Schenkl, S. Rummelin, R. Schild, “Marangoni wafer drying avoids disadvantages,” Solid State Technol. 39, 87–90 (1996).

1995 (1)

T. W. Drueding, S. C. Fawcett, S. R. Wilson, T. G. Bifano, “Ion beam figuring of small optical components,” Opt. Eng. 34, 3565–3571 (1995).
[CrossRef]

1993 (2)

J. Schwider, O. Falkenstorfer, H. Schreiber, A. Zoller, N. Streibl, “New compensating 4-phase algorithm for phase shift interferometry,” Opt. Eng. 32, 183–1885 (1993).
[CrossRef]

G. A. C. M. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28, 6261–6273 (1993).
[CrossRef]

1991 (1)

J. Marra, J. A. M. Huethorst, “Physical principles of Marangoni drying,” Langmuir 7, 2748–2755 (1991).
[CrossRef]

1990 (1)

A. F. M. Leenaars, J. A. M. Huethorst, J. J. van Oekel, “Marangoni drying: a new extremely clean drying process,” Langmuir 6, 1701–1703 (1990).
[CrossRef]

1960 (1)

L. E. Scriven, C. V. Sternling, “The Marangoni effects,” Nature 187, 186–188 (1960).
[CrossRef]

1949 (1)

H. P. Meissner, A. S. Michaels, “Surface tensions of pure liquids and liquid mixtures,” Ind. Eng. Chem. 41, 2782–2787 (1949).
[CrossRef]

Adamson, A. W.

A. W. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976), Chap. 1.

Aikens, D. A.

J. K. Lawson, D. A. Aikens, R. E. English, C. R. Wolfe, “Power spectral density specifications for high-power laser systems,” in Specification, Production and Testing of Optical Components and Systems, A. E. Gee, J. House, eds., Proc. SPIE2775, 345–356 (1996).
[CrossRef]

Allen, L. N.

L. N. Allen, R. E. Keim, “An ion figuring system for large optic fabrication,” Selected Papers on Computer-Controlled Optical Surfacing, R. A. Jones, ed., Vol. 40 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1991), pp. 348–363.

Arrasmith, S. R.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).

Baker, P. C.

P. C. Baker, “Advanced flow polishing of exotic optical materials,” in X-Ray/EUV Optics for Astronomy and Microscopy, R. B. Hoover, ed., Proc. SPIE1160, 263–270 (1989).
[CrossRef]

Barden, S. C.

S. C. Barden, A. Camacho, H. Yarborough, “Post-polishing VPH gratings for improved wavefront performance,” in Specialized Optical Developments in Astronomy, E. Atad-Ettedgui, S. D’Odorico, eds., Proc. SPIE4842, 39–42 (2003).
[CrossRef]

Bayramian, A. J.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Beach, R. J.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Behrendt, W.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Bibeau, C.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Bifano, T. G.

T. W. Drueding, S. C. Fawcett, S. R. Wilson, T. G. Bifano, “Ion beam figuring of small optical components,” Opt. Eng. 34, 3565–3571 (1995).
[CrossRef]

Britten, J. A.

J. A. Britten, “A moving-zone Marangoni drying process for critical cleaning and wet processing,” Solid State Technol. 40, 143–148 (1997).

Camacho, A.

S. C. Barden, A. Camacho, H. Yarborough, “Post-polishing VPH gratings for improved wavefront performance,” in Specialized Optical Developments in Astronomy, E. Atad-Ettedgui, S. D’Odorico, eds., Proc. SPIE4842, 39–42 (2003).
[CrossRef]

Campbell, R.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

DeWald, A.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Dickson, L. D.

R. D. Rallison, R. W. Rallison, L. D. Dickson, “Fabrication and testing of large area VPH gratings,” in Specialized Optical Developments in Astronomy, E. Atad-Ettedgui, S. D’Odorico, eds., Proc. SPIE4842, 10–21 (2003).
[CrossRef]

Ding, X.

X. Ding, Y. Yasui, Y. Kawaguchi, H. Niino, A. Yabe, “Laser-induced back-side wet-etching of fused silica with an aqueous solution containing organic molecules,” Appl. Phys. A 75, 437–440 (2002).
[CrossRef]

Dixit, S. N.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Drueding, T. W.

T. W. Drueding, S. C. Fawcett, S. R. Wilson, T. G. Bifano, “Ion beam figuring of small optical components,” Opt. Eng. 34, 3565–3571 (1995).
[CrossRef]

Dumas, P.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).

D. Golini, W. I. Kordonski, P. Dumas, S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” in Optical Manufacturing and Testing III, H. P. Stahl, ed., Proc. SPIE3782, 80–91 (1999).
[CrossRef]

Ebbers, C. A.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Eitel, B.

K. Wolke, B. Eitel, M. Schenkl, S. Rummelin, R. Schild, “Marangoni wafer drying avoids disadvantages,” Solid State Technol. 39, 87–90 (1996).

English, R. E.

J. K. Lawson, D. A. Aikens, R. E. English, C. R. Wolfe, “Power spectral density specifications for high-power laser systems,” in Specification, Production and Testing of Optical Components and Systems, A. E. Gee, J. House, eds., Proc. SPIE2775, 345–356 (1996).
[CrossRef]

Fahnle, O. W.

O. W. Fahnle, H. van Brug, H. J. Frankena, “Fluid jet polishing of optical surfaces,” Appl. Opt. 37, 6771–6773 (1998).
[CrossRef]

O. W. Fahnle, H. van Brug, “Fluid jet polishing: removal process analysis,” in Optical Fabrication and Testing, R. Geyl, J. Maxwell, eds., Proc. SPIE3739, 68–77 (1999).
[CrossRef]

Falkenstorfer, O.

J. Schwider, O. Falkenstorfer, H. Schreiber, A. Zoller, N. Streibl, “New compensating 4-phase algorithm for phase shift interferometry,” Opt. Eng. 32, 183–1885 (1993).
[CrossRef]

Fawcett, S. C.

T. W. Drueding, S. C. Fawcett, S. R. Wilson, T. G. Bifano, “Ion beam figuring of small optical components,” Opt. Eng. 34, 3565–3571 (1995).
[CrossRef]

Frankena, H. J.

Freitas, B. L.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Golini, D.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).

D. Golini, W. I. Kordonski, P. Dumas, S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” in Optical Manufacturing and Testing III, H. P. Stahl, ed., Proc. SPIE3782, 80–91 (1999).
[CrossRef]

Gollini, D.

S. D. Jacobs, W. Kordonski, I. V. Prokhorev, D. Gollini, G. R. Grodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

Gregg, L. L.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).

Grodkin, G. R.

S. D. Jacobs, W. Kordonski, I. V. Prokhorev, D. Gollini, G. R. Grodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

Hill, M. R.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Hogan, S.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).

Hogan, S. J.

D. Golini, W. I. Kordonski, P. Dumas, S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” in Optical Manufacturing and Testing III, H. P. Stahl, ed., Proc. SPIE3782, 80–91 (1999).
[CrossRef]

Huethorst, J. A. M.

J. Marra, J. A. M. Huethorst, “Physical principles of Marangoni drying,” Langmuir 7, 2748–2755 (1991).
[CrossRef]

A. F. M. Leenaars, J. A. M. Huethorst, J. J. van Oekel, “Marangoni drying: a new extremely clean drying process,” Langmuir 6, 1701–1703 (1990).
[CrossRef]

Jacobs, S. D.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).

S. D. Jacobs, W. Kordonski, I. V. Prokhorev, D. Gollini, G. R. Grodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

Kanz, V. K.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Kawaguchi, Y.

X. Ding, Y. Yasui, Y. Kawaguchi, H. Niino, A. Yabe, “Laser-induced back-side wet-etching of fused silica with an aqueous solution containing organic molecules,” Appl. Phys. A 75, 437–440 (2002).
[CrossRef]

Keim, R. E.

L. N. Allen, R. E. Keim, “An ion figuring system for large optic fabrication,” Selected Papers on Computer-Controlled Optical Surfacing, R. A. Jones, ed., Vol. 40 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1991), pp. 348–363.

Kordonski, W.

S. D. Jacobs, W. Kordonski, I. V. Prokhorev, D. Gollini, G. R. Grodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

Kordonski, W. I.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).

D. Golini, W. I. Kordonski, P. Dumas, S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” in Optical Manufacturing and Testing III, H. P. Stahl, ed., Proc. SPIE3782, 80–91 (1999).
[CrossRef]

Kozhinova, I. A.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).

Lawson, J. K.

J. K. Lawson, D. A. Aikens, R. E. English, C. R. Wolfe, “Power spectral density specifications for high-power laser systems,” in Specification, Production and Testing of Optical Components and Systems, A. E. Gee, J. House, eds., Proc. SPIE2775, 345–356 (1996).
[CrossRef]

Leenaars, A. F. M.

A. F. M. Leenaars, J. A. M. Huethorst, J. J. van Oekel, “Marangoni drying: a new extremely clean drying process,” Langmuir 6, 1701–1703 (1990).
[CrossRef]

Marra, J.

J. Marra, J. A. M. Huethorst, “Physical principles of Marangoni drying,” Langmuir 7, 2748–2755 (1991).
[CrossRef]

Meissner, H. P.

H. P. Meissner, A. S. Michaels, “Surface tensions of pure liquids and liquid mixtures,” Ind. Eng. Chem. 41, 2782–2787 (1949).
[CrossRef]

Michaels, A. S.

H. P. Meissner, A. S. Michaels, “Surface tensions of pure liquids and liquid mixtures,” Ind. Eng. Chem. 41, 2782–2787 (1949).
[CrossRef]

Niino, H.

X. Ding, Y. Yasui, Y. Kawaguchi, H. Niino, A. Yabe, “Laser-induced back-side wet-etching of fused silica with an aqueous solution containing organic molecules,” Appl. Phys. A 75, 437–440 (2002).
[CrossRef]

Payne, S. A.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Prokhorev, I. V.

S. D. Jacobs, W. Kordonski, I. V. Prokhorev, D. Gollini, G. R. Grodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

Rallison, R. D.

R. D. Rallison, R. W. Rallison, L. D. Dickson, “Fabrication and testing of large area VPH gratings,” in Specialized Optical Developments in Astronomy, E. Atad-Ettedgui, S. D’Odorico, eds., Proc. SPIE4842, 10–21 (2003).
[CrossRef]

Rallison, R. W.

R. D. Rallison, R. W. Rallison, L. D. Dickson, “Fabrication and testing of large area VPH gratings,” in Specialized Optical Developments in Astronomy, E. Atad-Ettedgui, S. D’Odorico, eds., Proc. SPIE4842, 10–21 (2003).
[CrossRef]

Rankin, J.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Romanofsky, H. J.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).

Rummelin, S.

K. Wolke, B. Eitel, M. Schenkl, S. Rummelin, R. Schild, “Marangoni wafer drying avoids disadvantages,” Solid State Technol. 39, 87–90 (1996).

Rushford, M. C.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Schaffers, K. I.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Schenkl, M.

K. Wolke, B. Eitel, M. Schenkl, S. Rummelin, R. Schild, “Marangoni wafer drying avoids disadvantages,” Solid State Technol. 39, 87–90 (1996).

Schild, R.

K. Wolke, B. Eitel, M. Schenkl, S. Rummelin, R. Schild, “Marangoni wafer drying avoids disadvantages,” Solid State Technol. 39, 87–90 (1996).

Schmidt, J.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Schreiber, H.

J. Schwider, O. Falkenstorfer, H. Schreiber, A. Zoller, N. Streibl, “New compensating 4-phase algorithm for phase shift interferometry,” Opt. Eng. 32, 183–1885 (1993).
[CrossRef]

Schwider, J.

J. Schwider, O. Falkenstorfer, H. Schreiber, A. Zoller, N. Streibl, “New compensating 4-phase algorithm for phase shift interferometry,” Opt. Eng. 32, 183–1885 (1993).
[CrossRef]

Scriven, L. E.

L. E. Scriven, C. V. Sternling, “The Marangoni effects,” Nature 187, 186–188 (1960).
[CrossRef]

Shorey, A. B.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).

Skulina, K. M.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Smith, D. J.

D. J. Smith, “The development of ion etched phase plates,” LLE Review 74, 71–91 (1998).

Spierings, G. A. C. M.

G. A. C. M. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28, 6261–6273 (1993).
[CrossRef]

Sternling, C. V.

L. E. Scriven, C. V. Sternling, “The Marangoni effects,” Nature 187, 186–188 (1960).
[CrossRef]

Strafford, T. D.

S. D. Jacobs, W. Kordonski, I. V. Prokhorev, D. Gollini, G. R. Grodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

Streibl, N.

J. Schwider, O. Falkenstorfer, H. Schreiber, A. Zoller, N. Streibl, “New compensating 4-phase algorithm for phase shift interferometry,” Opt. Eng. 32, 183–1885 (1993).
[CrossRef]

Tassano, J. B.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

Taylor, J. S.

J. S. Taylor, “Precision non-contact polishing tool,” U.S. patent5,591,068 (7January1997).

Telford, S.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

van Brug, H.

O. W. Fahnle, H. van Brug, H. J. Frankena, “Fluid jet polishing of optical surfaces,” Appl. Opt. 37, 6771–6773 (1998).
[CrossRef]

O. W. Fahnle, H. van Brug, “Fluid jet polishing: removal process analysis,” in Optical Fabrication and Testing, R. Geyl, J. Maxwell, eds., Proc. SPIE3739, 68–77 (1999).
[CrossRef]

van Oekel, J. J.

A. F. M. Leenaars, J. A. M. Huethorst, J. J. van Oekel, “Marangoni drying: a new extremely clean drying process,” Langmuir 6, 1701–1703 (1990).
[CrossRef]

Wilson, S. R.

T. W. Drueding, S. C. Fawcett, S. R. Wilson, T. G. Bifano, “Ion beam figuring of small optical components,” Opt. Eng. 34, 3565–3571 (1995).
[CrossRef]

Wolfe, C. R.

J. K. Lawson, D. A. Aikens, R. E. English, C. R. Wolfe, “Power spectral density specifications for high-power laser systems,” in Specification, Production and Testing of Optical Components and Systems, A. E. Gee, J. House, eds., Proc. SPIE2775, 345–356 (1996).
[CrossRef]

Wolke, K.

K. Wolke, B. Eitel, M. Schenkl, S. Rummelin, R. Schild, “Marangoni wafer drying avoids disadvantages,” Solid State Technol. 39, 87–90 (1996).

Yabe, A.

X. Ding, Y. Yasui, Y. Kawaguchi, H. Niino, A. Yabe, “Laser-induced back-side wet-etching of fused silica with an aqueous solution containing organic molecules,” Appl. Phys. A 75, 437–440 (2002).
[CrossRef]

Yarborough, H.

S. C. Barden, A. Camacho, H. Yarborough, “Post-polishing VPH gratings for improved wavefront performance,” in Specialized Optical Developments in Astronomy, E. Atad-Ettedgui, S. D’Odorico, eds., Proc. SPIE4842, 39–42 (2003).
[CrossRef]

Yasui, Y.

X. Ding, Y. Yasui, Y. Kawaguchi, H. Niino, A. Yabe, “Laser-induced back-side wet-etching of fused silica with an aqueous solution containing organic molecules,” Appl. Phys. A 75, 437–440 (2002).
[CrossRef]

Zoller, A.

J. Schwider, O. Falkenstorfer, H. Schreiber, A. Zoller, N. Streibl, “New compensating 4-phase algorithm for phase shift interferometry,” Opt. Eng. 32, 183–1885 (1993).
[CrossRef]

Am. Ceram. Soc. Bull. (1)

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “MRF: computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78, 42–48 (1999).

Appl. Opt. (1)

Appl. Phys. A (1)

X. Ding, Y. Yasui, Y. Kawaguchi, H. Niino, A. Yabe, “Laser-induced back-side wet-etching of fused silica with an aqueous solution containing organic molecules,” Appl. Phys. A 75, 437–440 (2002).
[CrossRef]

Ind. Eng. Chem. (1)

H. P. Meissner, A. S. Michaels, “Surface tensions of pure liquids and liquid mixtures,” Ind. Eng. Chem. 41, 2782–2787 (1949).
[CrossRef]

J. Mater. Sci. (1)

G. A. C. M. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28, 6261–6273 (1993).
[CrossRef]

Langmuir (2)

A. F. M. Leenaars, J. A. M. Huethorst, J. J. van Oekel, “Marangoni drying: a new extremely clean drying process,” Langmuir 6, 1701–1703 (1990).
[CrossRef]

J. Marra, J. A. M. Huethorst, “Physical principles of Marangoni drying,” Langmuir 7, 2748–2755 (1991).
[CrossRef]

LLE Review (1)

D. J. Smith, “The development of ion etched phase plates,” LLE Review 74, 71–91 (1998).

Nature (1)

L. E. Scriven, C. V. Sternling, “The Marangoni effects,” Nature 187, 186–188 (1960).
[CrossRef]

Opt. Eng. (2)

T. W. Drueding, S. C. Fawcett, S. R. Wilson, T. G. Bifano, “Ion beam figuring of small optical components,” Opt. Eng. 34, 3565–3571 (1995).
[CrossRef]

J. Schwider, O. Falkenstorfer, H. Schreiber, A. Zoller, N. Streibl, “New compensating 4-phase algorithm for phase shift interferometry,” Opt. Eng. 32, 183–1885 (1993).
[CrossRef]

Solid State Technol. (2)

K. Wolke, B. Eitel, M. Schenkl, S. Rummelin, R. Schild, “Marangoni wafer drying avoids disadvantages,” Solid State Technol. 39, 87–90 (1996).

J. A. Britten, “A moving-zone Marangoni drying process for critical cleaning and wet processing,” Solid State Technol. 40, 143–148 (1997).

Other (11)

A. W. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976), Chap. 1.

A. J. Bayramian, R. J. Beach, W. Behrendt, C. Bibeau, R. Campbell, S. N. Dixit, C. A. Ebbers, B. L. Freitas, V. K. Kanz, M. C. Rushford, S. A. Payne, J. Schmidt, K. I. Schaffers, K. M. Skulina, S. Telford, J. B. Tassano, A. DeWald, J. Rankin, M. R. Hill, “Activation of the mercury laser, a diode-pumped, gas-cooled, solid-state slab laser,” in Advanced Solid-State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 268–272.

S. C. Barden, A. Camacho, H. Yarborough, “Post-polishing VPH gratings for improved wavefront performance,” in Specialized Optical Developments in Astronomy, E. Atad-Ettedgui, S. D’Odorico, eds., Proc. SPIE4842, 39–42 (2003).
[CrossRef]

R. D. Rallison, R. W. Rallison, L. D. Dickson, “Fabrication and testing of large area VPH gratings,” in Specialized Optical Developments in Astronomy, E. Atad-Ettedgui, S. D’Odorico, eds., Proc. SPIE4842, 10–21 (2003).
[CrossRef]

L. N. Allen, R. E. Keim, “An ion figuring system for large optic fabrication,” Selected Papers on Computer-Controlled Optical Surfacing, R. A. Jones, ed., Vol. 40 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1991), pp. 348–363.

O. W. Fahnle, H. van Brug, “Fluid jet polishing: removal process analysis,” in Optical Fabrication and Testing, R. Geyl, J. Maxwell, eds., Proc. SPIE3739, 68–77 (1999).
[CrossRef]

S. D. Jacobs, W. Kordonski, I. V. Prokhorev, D. Gollini, G. R. Grodkin, T. D. Strafford, “Deterministic magnetorheological finishing,” U.S. patent5,795,212 (18August1998).

D. Golini, W. I. Kordonski, P. Dumas, S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” in Optical Manufacturing and Testing III, H. P. Stahl, ed., Proc. SPIE3782, 80–91 (1999).
[CrossRef]

J. K. Lawson, D. A. Aikens, R. E. English, C. R. Wolfe, “Power spectral density specifications for high-power laser systems,” in Specification, Production and Testing of Optical Components and Systems, A. E. Gee, J. House, eds., Proc. SPIE2775, 345–356 (1996).
[CrossRef]

J. S. Taylor, “Precision non-contact polishing tool,” U.S. patent5,591,068 (7January1997).

P. C. Baker, “Advanced flow polishing of exotic optical materials,” in X-Ray/EUV Optics for Astronomy and Microscopy, R. B. Hoover, ed., Proc. SPIE1160, 263–270 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

General schematic of fluid flow in two-dimensional WEF. The liquid issues from inside the tube and flows down the outside, with a droplet attached to the surface placed near the tube end. A surface-tension gradient from A (weak) to B (strong), caused by the Marangoni effect, stabilizes droplet size and shape during lateral motion of the surface to which the droplet is attached.

Fig. 2
Fig. 2

(A) Schematic showing the creation and relative displacement between two divergent light sources, S′ and S″, giving rise to uniformly spaced fringes. (B) Creation of source S while the fringes are also projected onto a camera or encoding device at a magnification that can be adjusted. The scale on the fringe pattern shown is the number of pixels in the frame.

Fig. 3
Fig. 3

Photograph of one of two WEF machines at the LLNL: A, control interface; B, etchant applicator; C, glass substrate; D, XY stage; E, interferometer.

Fig. 4
Fig. 4

Beam shaping optic figured by WEF to shape a Gaussian laser beam at focus into a flat-top beam to enhance a short-pulse laser machining application. Clear aperture 25-mm WEF on 380-μm-thick borosilicate sheet glass. Top, gray-scale (left) and fringe interferogram of the figured part. Bottom, lineouts of the original and corrected beam profiles at the focal plane. This optic resulted in significant improvement in the shape of the machined holes. The extreme thinness of the glass prevents nonlinear self-focusing aberrations that would occur if traditional polished optics were used.

Fig. 5
Fig. 5

Beam correcting optic figured by WEF to correct static aberrations accumulated in the laser cavity of the LLNL’s high-power diode-pumped solid-state Mercury laser. Figured aperture, 30 mm × 48 mm on 1.1-mm-thick sheet glass. Top, fringe interferograms of the design (left) and the actual (right) optic. Below, best focus for uncorrected (left) and corrected (right) beams. This optic facilitated nearly diffraction-limited focusing.

Fig. 6
Fig. 6

Top, design (left) and actual (right) transmitted wave-front interferograms of a 30 mm × 30 mm aperture, 380-μm-thick WEF-fabricated CPP used for beam homogenization and spot size control for LLNL’s National Ignition Facility (NIF) laser. Bottom, surface relief view of the phase plate. Residual Strehl ratio, 0.46.

Fig. 7
Fig. 7

Transmitted zero-order wave front of a DCG grating with a fused-silica base and cover plates before and after WEF correction. Also shown is the 1st order transmitted wave front over a 20 mm × 13 mm aperture. The WEF correction compensates for glue-induced warpage of this multielement optic. Controlling the WEF by use of the 0th order was sufficient to reduce the power of the -1 transmitted order to less than 0.015 wave and reduced the rms roughness by a factor of 2 as well. PV, peak-to-valley.

Fig. 8
Fig. 8

PSD versus spatial frequency of both sides of a DCG VPH grating sealed between two polished fused-silica substrates. One surface was figured by WEF. The PSD is nominally identical for both surfaces; the wet-etch figured surface is smoother at lower frequencies because of the figuring.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

X=2t sinϕ.
OPD=2nt cos ϕ,
d=Lλ/X,
tanΦ+π/4=2I0-I2I0-I1+I2+I3.

Metrics