Abstract

We report on the design, realization, and characterization of a four-channel integrated optical Young interferometer device that enables simultaneous and independent monitoring of three binding processes. The generated interference pattern is recorded by a CCD camera and analyzed with a fast-Fourier-transform algorithm. We present a thorough theoretical analysis of such a device. The realized device is tested by monitoring glucose solutions that induce well defined phase changes between output channels. The simultaneous measurement of three different glucose concentrations shows the multipurpose feature of such devices. The observed errors, caused by the mismatching of spatial frequencies of individual interference patterns with those determined from the CCD camera, are reduced with different reduction schemes. The phase resolution for different pairs of channels was ∼1 × 10-4 fringes, which corresponds to a refractive-index resolution of ∼8.5 × 10-8. The measured sensitivity coefficient of the phase change versus refractive-index change of ∼1.22 × 103 × 2π agrees well with the calculated coefficient of ∼1.20 × 103 × 2π.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Lambeck, “Integrated opto-chemical sensors,” Sens. Actuators B 8, 103–116 (1992).
    [CrossRef]
  2. E. F. Schipper, R. P. H. Kooyman, R. G. Heideman, J. Greve, “Feasibility of optical waveguide immunosensors for pesticide detection: physical aspects,” Sens. Actuators B 24, 90–93 (1995).
    [CrossRef]
  3. R. G. Heideman, P. V. Lambeck, “Integrated optical sensor system for detection of chemical concentrations,” in Proceedings of 1997 IEEE/LEOS Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 29–32.
  4. L. M. Lechuga, F. Prieto, A. Calle, A. Llobera, C. Dominguez, “Immunological biosensors based on integrated optical sensors for environmental applications,” Quim. Analit. 18, 144–146 (1999).
  5. E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, J. Greve, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B 40, 147–153 (1997).
    [CrossRef]
  6. R. G. Heideman, P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sen. Actuators B 61, 100–127 (1999).
    [CrossRef]
  7. I. S. Duport, P. Benech, R. Rimet, “New integrated-optics interferometer in planar technology,” Appl. Opt. 33, 5954–5958 (1994).
    [CrossRef] [PubMed]
  8. A. Brandenburg, R. Henninger, “Integrated optical Young interferometer,” Appl. Opt. 33, 5941–5947 (1994).
    [CrossRef] [PubMed]
  9. A. Brandenburg, “Differential refractometry by an integrated-optical Young interferometer,” Sens. Actuators B 38–39, 266–271 (1997).
    [CrossRef]
  10. G. H. Cross, Y. Ren, N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999).
    [CrossRef]
  11. C. Stamm, W. Lukosz, “Integrated optical difference interferometer as immunosensor,” Sens. Actuators B 31, 266–271 (1996).
    [CrossRef]
  12. T. Koster, P. V. Lambeck, “Fully integrated polarimeter,” Sens. Actuators B 82, 213–226 (2002).
    [CrossRef]
  13. A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B 83, 1–7 (2002).
    [CrossRef]
  14. C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70, 703–706 (1998).
    [CrossRef]
  15. O. Birkert, R. Tunnernann, G. Jung, G. Gauglitz, “Label-free parallel screening of combinatorial triazine libraries using reflectometric interference spectroscopy,” Anal. Chem. 74, 834–840 (2002).
    [CrossRef] [PubMed]
  16. A. Wikerstal, “Multichannel solutions for optical labelfree detection schemes based on the interferometric and grating coupler principle,” Ph.D. dissertation (University of Freiburg, Freiburg, Germany, 2001).
  17. A. Wikerstal, “Method for optical analysis and optical detector device,” European patentEP 1284418 (19February2003).
  18. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1998), pp. 385–388.
  19. W. Lukosz, K. Tiefenthaler, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
    [CrossRef]
  20. R. Syms, J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, London, 1992).
  21. K. Wörhoff, P. V. Lambeck, N. Albers, O. F. J. Noordman, N. F. van Hulst, T. J. A. Popma, “Optimization of LPCVD silicon onxynitride growth to large refractive-index homogeneity and layer thickness uniformity,” in Micro-optical Technologies for Measurement, Sensors and Microsystems II and Optical Fiber Sensor Technologies and Applications, O. M. Parriaux, B. Culshaw, M. Breidne, E. B. Kley, eds., Proc. SPIE3099, 257–268 (1997).
    [CrossRef]
  22. K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, T. J. A. Popma, “Plasma enhanced chemical vapor deposition of silicon oxynitride optimized for application in integrated optics,” Sens. Actuators B 74, 9–12 (1999).
    [CrossRef]
  23. O. Parriaux, G. J. Veldhuis, “Normalized analysis for the sensitivity optimization of integrated optical evanescent sensors,” J. Lightwave Technol. 16, 573–582 (1998).
    [CrossRef]
  24. R. C. Weast, Handbook of Chemistry and Physics, 65th ed. (CRC Press, Boca Raton, Fla., 1984–1985), p. D-234.
  25. S. Nakadate, “Phase detection of equidistant fringes for highly sensitive optical sensing. I. Principle and error analysis,” J. Opt. Soc. Am. A 5, 1258–1264 (1988).
    [CrossRef]
  26. M. Kujawinska, J. Wojciak, “High accuracy Fourier transform fringe pattern analysis,” Opt. Lasers Eng. 14, 325–339 (1991).
    [CrossRef]
  27. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).
  28. E. R. Brigham, The Fast Fourier Transform (Prentice-Hall, Englewood Cliffs, N. J., 1974).
  29. M. Cerna, A. F. Harvey, “The fundamentals of FFT-based signal analysis and measurement.” Application Note 041 (National Instruments, 2000), http://www.ni.com .
  30. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” in Proceedings of IEEE 66 (Institute of Electrical and Electronics Engineers, New York, 1978), pp. 51–83.
    [CrossRef]
  31. A. H. Nuttall, “Some windows with very good sidelobe behavior,” IEEE Trans. Acoust. Speech Signal Process. 29, 84–91 (1981).
    [CrossRef]
  32. R. G. Heideman, R. P. H. Kooyman, J. Greve, “Immunoreactivity of adsorbed antihuman chorionic gonadotropin studied with an optical waveguide interferometric sensor,” Biosens. Bioelectron. 9, 33–43 (1994).
    [CrossRef]

2002 (3)

T. Koster, P. V. Lambeck, “Fully integrated polarimeter,” Sens. Actuators B 82, 213–226 (2002).
[CrossRef]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B 83, 1–7 (2002).
[CrossRef]

O. Birkert, R. Tunnernann, G. Jung, G. Gauglitz, “Label-free parallel screening of combinatorial triazine libraries using reflectometric interference spectroscopy,” Anal. Chem. 74, 834–840 (2002).
[CrossRef] [PubMed]

1999 (4)

G. H. Cross, Y. Ren, N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999).
[CrossRef]

R. G. Heideman, P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sen. Actuators B 61, 100–127 (1999).
[CrossRef]

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, T. J. A. Popma, “Plasma enhanced chemical vapor deposition of silicon oxynitride optimized for application in integrated optics,” Sens. Actuators B 74, 9–12 (1999).
[CrossRef]

L. M. Lechuga, F. Prieto, A. Calle, A. Llobera, C. Dominguez, “Immunological biosensors based on integrated optical sensors for environmental applications,” Quim. Analit. 18, 144–146 (1999).

1998 (2)

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70, 703–706 (1998).
[CrossRef]

O. Parriaux, G. J. Veldhuis, “Normalized analysis for the sensitivity optimization of integrated optical evanescent sensors,” J. Lightwave Technol. 16, 573–582 (1998).
[CrossRef]

1997 (2)

A. Brandenburg, “Differential refractometry by an integrated-optical Young interferometer,” Sens. Actuators B 38–39, 266–271 (1997).
[CrossRef]

E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, J. Greve, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B 40, 147–153 (1997).
[CrossRef]

1996 (1)

C. Stamm, W. Lukosz, “Integrated optical difference interferometer as immunosensor,” Sens. Actuators B 31, 266–271 (1996).
[CrossRef]

1995 (1)

E. F. Schipper, R. P. H. Kooyman, R. G. Heideman, J. Greve, “Feasibility of optical waveguide immunosensors for pesticide detection: physical aspects,” Sens. Actuators B 24, 90–93 (1995).
[CrossRef]

1994 (3)

R. G. Heideman, R. P. H. Kooyman, J. Greve, “Immunoreactivity of adsorbed antihuman chorionic gonadotropin studied with an optical waveguide interferometric sensor,” Biosens. Bioelectron. 9, 33–43 (1994).
[CrossRef]

A. Brandenburg, R. Henninger, “Integrated optical Young interferometer,” Appl. Opt. 33, 5941–5947 (1994).
[CrossRef] [PubMed]

I. S. Duport, P. Benech, R. Rimet, “New integrated-optics interferometer in planar technology,” Appl. Opt. 33, 5954–5958 (1994).
[CrossRef] [PubMed]

1992 (1)

P. V. Lambeck, “Integrated opto-chemical sensors,” Sens. Actuators B 8, 103–116 (1992).
[CrossRef]

1991 (1)

M. Kujawinska, J. Wojciak, “High accuracy Fourier transform fringe pattern analysis,” Opt. Lasers Eng. 14, 325–339 (1991).
[CrossRef]

1989 (1)

1988 (1)

1981 (1)

A. H. Nuttall, “Some windows with very good sidelobe behavior,” IEEE Trans. Acoust. Speech Signal Process. 29, 84–91 (1981).
[CrossRef]

Albers, N.

K. Wörhoff, P. V. Lambeck, N. Albers, O. F. J. Noordman, N. F. van Hulst, T. J. A. Popma, “Optimization of LPCVD silicon onxynitride growth to large refractive-index homogeneity and layer thickness uniformity,” in Micro-optical Technologies for Measurement, Sensors and Microsystems II and Optical Fiber Sensor Technologies and Applications, O. M. Parriaux, B. Culshaw, M. Breidne, E. B. Kley, eds., Proc. SPIE3099, 257–268 (1997).
[CrossRef]

Benech, P.

Berger, C. E. H.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70, 703–706 (1998).
[CrossRef]

Beumer, T. A. M.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70, 703–706 (1998).
[CrossRef]

Birkert, O.

O. Birkert, R. Tunnernann, G. Jung, G. Gauglitz, “Label-free parallel screening of combinatorial triazine libraries using reflectometric interference spectroscopy,” Anal. Chem. 74, 834–840 (2002).
[CrossRef] [PubMed]

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).

Brandenburg, A.

A. Brandenburg, “Differential refractometry by an integrated-optical Young interferometer,” Sens. Actuators B 38–39, 266–271 (1997).
[CrossRef]

A. Brandenburg, R. Henninger, “Integrated optical Young interferometer,” Appl. Opt. 33, 5941–5947 (1994).
[CrossRef] [PubMed]

Brigham, E. R.

E. R. Brigham, The Fast Fourier Transform (Prentice-Hall, Englewood Cliffs, N. J., 1974).

Brugman, A. M.

E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, J. Greve, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B 40, 147–153 (1997).
[CrossRef]

Calle, A.

L. M. Lechuga, F. Prieto, A. Calle, A. Llobera, C. Dominguez, “Immunological biosensors based on integrated optical sensors for environmental applications,” Quim. Analit. 18, 144–146 (1999).

Cerna, M.

M. Cerna, A. F. Harvey, “The fundamentals of FFT-based signal analysis and measurement.” Application Note 041 (National Instruments, 2000), http://www.ni.com .

Cozens, J.

R. Syms, J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, London, 1992).

Cross, G. H.

G. H. Cross, Y. Ren, N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999).
[CrossRef]

Dominguez, C.

L. M. Lechuga, F. Prieto, A. Calle, A. Llobera, C. Dominguez, “Immunological biosensors based on integrated optical sensors for environmental applications,” Quim. Analit. 18, 144–146 (1999).

E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, J. Greve, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B 40, 147–153 (1997).
[CrossRef]

Driessen, A.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, T. J. A. Popma, “Plasma enhanced chemical vapor deposition of silicon oxynitride optimized for application in integrated optics,” Sens. Actuators B 74, 9–12 (1999).
[CrossRef]

Duport, I. S.

Freeman, N. J.

G. H. Cross, Y. Ren, N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999).
[CrossRef]

Gauglitz, G.

O. Birkert, R. Tunnernann, G. Jung, G. Gauglitz, “Label-free parallel screening of combinatorial triazine libraries using reflectometric interference spectroscopy,” Anal. Chem. 74, 834–840 (2002).
[CrossRef] [PubMed]

Greve, J.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B 83, 1–7 (2002).
[CrossRef]

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70, 703–706 (1998).
[CrossRef]

E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, J. Greve, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B 40, 147–153 (1997).
[CrossRef]

E. F. Schipper, R. P. H. Kooyman, R. G. Heideman, J. Greve, “Feasibility of optical waveguide immunosensors for pesticide detection: physical aspects,” Sens. Actuators B 24, 90–93 (1995).
[CrossRef]

R. G. Heideman, R. P. H. Kooyman, J. Greve, “Immunoreactivity of adsorbed antihuman chorionic gonadotropin studied with an optical waveguide interferometric sensor,” Biosens. Bioelectron. 9, 33–43 (1994).
[CrossRef]

Harris, F. J.

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” in Proceedings of IEEE 66 (Institute of Electrical and Electronics Engineers, New York, 1978), pp. 51–83.
[CrossRef]

Harvey, A. F.

M. Cerna, A. F. Harvey, “The fundamentals of FFT-based signal analysis and measurement.” Application Note 041 (National Instruments, 2000), http://www.ni.com .

Hecht, E.

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1998), pp. 385–388.

Heideman, R. G.

R. G. Heideman, P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sen. Actuators B 61, 100–127 (1999).
[CrossRef]

E. F. Schipper, R. P. H. Kooyman, R. G. Heideman, J. Greve, “Feasibility of optical waveguide immunosensors for pesticide detection: physical aspects,” Sens. Actuators B 24, 90–93 (1995).
[CrossRef]

R. G. Heideman, R. P. H. Kooyman, J. Greve, “Immunoreactivity of adsorbed antihuman chorionic gonadotropin studied with an optical waveguide interferometric sensor,” Biosens. Bioelectron. 9, 33–43 (1994).
[CrossRef]

R. G. Heideman, P. V. Lambeck, “Integrated optical sensor system for detection of chemical concentrations,” in Proceedings of 1997 IEEE/LEOS Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 29–32.

Henninger, R.

Hilderink, L. T. H.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, T. J. A. Popma, “Plasma enhanced chemical vapor deposition of silicon oxynitride optimized for application in integrated optics,” Sens. Actuators B 74, 9–12 (1999).
[CrossRef]

Jung, G.

O. Birkert, R. Tunnernann, G. Jung, G. Gauglitz, “Label-free parallel screening of combinatorial triazine libraries using reflectometric interference spectroscopy,” Anal. Chem. 74, 834–840 (2002).
[CrossRef] [PubMed]

Kanger, J. S.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B 83, 1–7 (2002).
[CrossRef]

Kooyman, R. P. H.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70, 703–706 (1998).
[CrossRef]

E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, J. Greve, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B 40, 147–153 (1997).
[CrossRef]

E. F. Schipper, R. P. H. Kooyman, R. G. Heideman, J. Greve, “Feasibility of optical waveguide immunosensors for pesticide detection: physical aspects,” Sens. Actuators B 24, 90–93 (1995).
[CrossRef]

R. G. Heideman, R. P. H. Kooyman, J. Greve, “Immunoreactivity of adsorbed antihuman chorionic gonadotropin studied with an optical waveguide interferometric sensor,” Biosens. Bioelectron. 9, 33–43 (1994).
[CrossRef]

Koster, T.

T. Koster, P. V. Lambeck, “Fully integrated polarimeter,” Sens. Actuators B 82, 213–226 (2002).
[CrossRef]

Kujawinska, M.

M. Kujawinska, J. Wojciak, “High accuracy Fourier transform fringe pattern analysis,” Opt. Lasers Eng. 14, 325–339 (1991).
[CrossRef]

Lambeck, P. V.

T. Koster, P. V. Lambeck, “Fully integrated polarimeter,” Sens. Actuators B 82, 213–226 (2002).
[CrossRef]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B 83, 1–7 (2002).
[CrossRef]

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, T. J. A. Popma, “Plasma enhanced chemical vapor deposition of silicon oxynitride optimized for application in integrated optics,” Sens. Actuators B 74, 9–12 (1999).
[CrossRef]

R. G. Heideman, P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sen. Actuators B 61, 100–127 (1999).
[CrossRef]

P. V. Lambeck, “Integrated opto-chemical sensors,” Sens. Actuators B 8, 103–116 (1992).
[CrossRef]

R. G. Heideman, P. V. Lambeck, “Integrated optical sensor system for detection of chemical concentrations,” in Proceedings of 1997 IEEE/LEOS Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 29–32.

K. Wörhoff, P. V. Lambeck, N. Albers, O. F. J. Noordman, N. F. van Hulst, T. J. A. Popma, “Optimization of LPCVD silicon onxynitride growth to large refractive-index homogeneity and layer thickness uniformity,” in Micro-optical Technologies for Measurement, Sensors and Microsystems II and Optical Fiber Sensor Technologies and Applications, O. M. Parriaux, B. Culshaw, M. Breidne, E. B. Kley, eds., Proc. SPIE3099, 257–268 (1997).
[CrossRef]

Lechuga, L. M.

L. M. Lechuga, F. Prieto, A. Calle, A. Llobera, C. Dominguez, “Immunological biosensors based on integrated optical sensors for environmental applications,” Quim. Analit. 18, 144–146 (1999).

E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, J. Greve, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B 40, 147–153 (1997).
[CrossRef]

Linders, P. W. C.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, T. J. A. Popma, “Plasma enhanced chemical vapor deposition of silicon oxynitride optimized for application in integrated optics,” Sens. Actuators B 74, 9–12 (1999).
[CrossRef]

Llobera, A.

L. M. Lechuga, F. Prieto, A. Calle, A. Llobera, C. Dominguez, “Immunological biosensors based on integrated optical sensors for environmental applications,” Quim. Analit. 18, 144–146 (1999).

Lukosz, W.

C. Stamm, W. Lukosz, “Integrated optical difference interferometer as immunosensor,” Sens. Actuators B 31, 266–271 (1996).
[CrossRef]

W. Lukosz, K. Tiefenthaler, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
[CrossRef]

Nakadate, S.

Noordman, O. F. J.

K. Wörhoff, P. V. Lambeck, N. Albers, O. F. J. Noordman, N. F. van Hulst, T. J. A. Popma, “Optimization of LPCVD silicon onxynitride growth to large refractive-index homogeneity and layer thickness uniformity,” in Micro-optical Technologies for Measurement, Sensors and Microsystems II and Optical Fiber Sensor Technologies and Applications, O. M. Parriaux, B. Culshaw, M. Breidne, E. B. Kley, eds., Proc. SPIE3099, 257–268 (1997).
[CrossRef]

Nuttall, A. H.

A. H. Nuttall, “Some windows with very good sidelobe behavior,” IEEE Trans. Acoust. Speech Signal Process. 29, 84–91 (1981).
[CrossRef]

Parriaux, O.

Popma, T. J. A.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, T. J. A. Popma, “Plasma enhanced chemical vapor deposition of silicon oxynitride optimized for application in integrated optics,” Sens. Actuators B 74, 9–12 (1999).
[CrossRef]

K. Wörhoff, P. V. Lambeck, N. Albers, O. F. J. Noordman, N. F. van Hulst, T. J. A. Popma, “Optimization of LPCVD silicon onxynitride growth to large refractive-index homogeneity and layer thickness uniformity,” in Micro-optical Technologies for Measurement, Sensors and Microsystems II and Optical Fiber Sensor Technologies and Applications, O. M. Parriaux, B. Culshaw, M. Breidne, E. B. Kley, eds., Proc. SPIE3099, 257–268 (1997).
[CrossRef]

Prieto, F.

L. M. Lechuga, F. Prieto, A. Calle, A. Llobera, C. Dominguez, “Immunological biosensors based on integrated optical sensors for environmental applications,” Quim. Analit. 18, 144–146 (1999).

Ren, Y.

G. H. Cross, Y. Ren, N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999).
[CrossRef]

Rimet, R.

Schipper, E. F.

E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, J. Greve, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B 40, 147–153 (1997).
[CrossRef]

E. F. Schipper, R. P. H. Kooyman, R. G. Heideman, J. Greve, “Feasibility of optical waveguide immunosensors for pesticide detection: physical aspects,” Sens. Actuators B 24, 90–93 (1995).
[CrossRef]

Stamm, C.

C. Stamm, W. Lukosz, “Integrated optical difference interferometer as immunosensor,” Sens. Actuators B 31, 266–271 (1996).
[CrossRef]

Syms, R.

R. Syms, J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, London, 1992).

Tiefenthaler, K.

Tunnernann, R.

O. Birkert, R. Tunnernann, G. Jung, G. Gauglitz, “Label-free parallel screening of combinatorial triazine libraries using reflectometric interference spectroscopy,” Anal. Chem. 74, 834–840 (2002).
[CrossRef] [PubMed]

van Hulst, N. F.

K. Wörhoff, P. V. Lambeck, N. Albers, O. F. J. Noordman, N. F. van Hulst, T. J. A. Popma, “Optimization of LPCVD silicon onxynitride growth to large refractive-index homogeneity and layer thickness uniformity,” in Micro-optical Technologies for Measurement, Sensors and Microsystems II and Optical Fiber Sensor Technologies and Applications, O. M. Parriaux, B. Culshaw, M. Breidne, E. B. Kley, eds., Proc. SPIE3099, 257–268 (1997).
[CrossRef]

Veldhuis, G. J.

Weast, R. C.

R. C. Weast, Handbook of Chemistry and Physics, 65th ed. (CRC Press, Boca Raton, Fla., 1984–1985), p. D-234.

Wijn, R.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B 83, 1–7 (2002).
[CrossRef]

Wikerstal, A.

A. Wikerstal, “Method for optical analysis and optical detector device,” European patentEP 1284418 (19February2003).

A. Wikerstal, “Multichannel solutions for optical labelfree detection schemes based on the interferometric and grating coupler principle,” Ph.D. dissertation (University of Freiburg, Freiburg, Germany, 2001).

Wojciak, J.

M. Kujawinska, J. Wojciak, “High accuracy Fourier transform fringe pattern analysis,” Opt. Lasers Eng. 14, 325–339 (1991).
[CrossRef]

Wörhoff, K.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, T. J. A. Popma, “Plasma enhanced chemical vapor deposition of silicon oxynitride optimized for application in integrated optics,” Sens. Actuators B 74, 9–12 (1999).
[CrossRef]

K. Wörhoff, P. V. Lambeck, N. Albers, O. F. J. Noordman, N. F. van Hulst, T. J. A. Popma, “Optimization of LPCVD silicon onxynitride growth to large refractive-index homogeneity and layer thickness uniformity,” in Micro-optical Technologies for Measurement, Sensors and Microsystems II and Optical Fiber Sensor Technologies and Applications, O. M. Parriaux, B. Culshaw, M. Breidne, E. B. Kley, eds., Proc. SPIE3099, 257–268 (1997).
[CrossRef]

Ymeti, A.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B 83, 1–7 (2002).
[CrossRef]

Anal. Chem. (2)

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70, 703–706 (1998).
[CrossRef]

O. Birkert, R. Tunnernann, G. Jung, G. Gauglitz, “Label-free parallel screening of combinatorial triazine libraries using reflectometric interference spectroscopy,” Anal. Chem. 74, 834–840 (2002).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biosens. Bioelectron. (1)

R. G. Heideman, R. P. H. Kooyman, J. Greve, “Immunoreactivity of adsorbed antihuman chorionic gonadotropin studied with an optical waveguide interferometric sensor,” Biosens. Bioelectron. 9, 33–43 (1994).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process. (1)

A. H. Nuttall, “Some windows with very good sidelobe behavior,” IEEE Trans. Acoust. Speech Signal Process. 29, 84–91 (1981).
[CrossRef]

J. Appl. Phys. (1)

G. H. Cross, Y. Ren, N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lasers Eng. (1)

M. Kujawinska, J. Wojciak, “High accuracy Fourier transform fringe pattern analysis,” Opt. Lasers Eng. 14, 325–339 (1991).
[CrossRef]

Quim. Analit. (1)

L. M. Lechuga, F. Prieto, A. Calle, A. Llobera, C. Dominguez, “Immunological biosensors based on integrated optical sensors for environmental applications,” Quim. Analit. 18, 144–146 (1999).

Sen. Actuators B (1)

R. G. Heideman, P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sen. Actuators B 61, 100–127 (1999).
[CrossRef]

Sens. Actuators B (8)

A. Brandenburg, “Differential refractometry by an integrated-optical Young interferometer,” Sens. Actuators B 38–39, 266–271 (1997).
[CrossRef]

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, T. J. A. Popma, “Plasma enhanced chemical vapor deposition of silicon oxynitride optimized for application in integrated optics,” Sens. Actuators B 74, 9–12 (1999).
[CrossRef]

E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, J. Greve, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B 40, 147–153 (1997).
[CrossRef]

P. V. Lambeck, “Integrated opto-chemical sensors,” Sens. Actuators B 8, 103–116 (1992).
[CrossRef]

E. F. Schipper, R. P. H. Kooyman, R. G. Heideman, J. Greve, “Feasibility of optical waveguide immunosensors for pesticide detection: physical aspects,” Sens. Actuators B 24, 90–93 (1995).
[CrossRef]

C. Stamm, W. Lukosz, “Integrated optical difference interferometer as immunosensor,” Sens. Actuators B 31, 266–271 (1996).
[CrossRef]

T. Koster, P. V. Lambeck, “Fully integrated polarimeter,” Sens. Actuators B 82, 213–226 (2002).
[CrossRef]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B 83, 1–7 (2002).
[CrossRef]

Other (11)

A. Wikerstal, “Multichannel solutions for optical labelfree detection schemes based on the interferometric and grating coupler principle,” Ph.D. dissertation (University of Freiburg, Freiburg, Germany, 2001).

A. Wikerstal, “Method for optical analysis and optical detector device,” European patentEP 1284418 (19February2003).

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1998), pp. 385–388.

R. G. Heideman, P. V. Lambeck, “Integrated optical sensor system for detection of chemical concentrations,” in Proceedings of 1997 IEEE/LEOS Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 29–32.

R. Syms, J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, London, 1992).

K. Wörhoff, P. V. Lambeck, N. Albers, O. F. J. Noordman, N. F. van Hulst, T. J. A. Popma, “Optimization of LPCVD silicon onxynitride growth to large refractive-index homogeneity and layer thickness uniformity,” in Micro-optical Technologies for Measurement, Sensors and Microsystems II and Optical Fiber Sensor Technologies and Applications, O. M. Parriaux, B. Culshaw, M. Breidne, E. B. Kley, eds., Proc. SPIE3099, 257–268 (1997).
[CrossRef]

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).

E. R. Brigham, The Fast Fourier Transform (Prentice-Hall, Englewood Cliffs, N. J., 1974).

M. Cerna, A. F. Harvey, “The fundamentals of FFT-based signal analysis and measurement.” Application Note 041 (National Instruments, 2000), http://www.ni.com .

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” in Proceedings of IEEE 66 (Institute of Electrical and Electronics Engineers, New York, 1978), pp. 51–83.
[CrossRef]

R. C. Weast, Handbook of Chemistry and Physics, 65th ed. (CRC Press, Boca Raton, Fla., 1984–1985), p. D-234.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Layout of the four-channel integrated optical YI (not on scale); W 1, W 2, W 3, and W 4, sensing windows of channels 1, 2, 3, and 4, respectively, L, distance between the CCD camera and the chip endface.

Fig. 2
Fig. 2

Cross section of the sensing window structure along the direction of output channels.

Fig. 3
Fig. 3

Top view of the four-channel integrated optical YI realized in SiON technology: W 1, W 2, W 3, and W 4 are the sensing windows on channels 1, 2, 3, and 4, respectively. The dimensions of the chip are 63 mm × 24 mm.

Fig. 4
Fig. 4

Cross section of the four-channel YI waveguide structure perpendicular to the output channels (see AA′ in Fig. 3).

Fig. 5
Fig. 5

Bottom view of the flow-through cuvette, which has four flow chambers. Each chamber has an in let, In, and out let, Out, through which sampling liquid flows to/from the sensing window.

Fig. 6
Fig. 6

(A) Time response of the four-channel YI sensor when a phase change of 2 × 2π is introduced into channel 1 by flowing 1.232% (by wt.) glucose solution. (B) Measured PE (PE1i , i = 2, 3, 4) and CT (CT ij , i, j ≠ 1) versus the phase change introduced into channel 1.

Fig. 7
Fig. 7

(A) Calculated amplitude and phase of the FFT of the interference pattern in the four-channel YI if spatial-frequency matching between individual interference patterns and those of the CCD camera is achieved. (B) Calculated amplitude and phase of the FFT of the interference pattern in the four-channel YI in case of a mismatch of spatial frequencies between individual interference patterns and those determined by the CCD camera.

Fig. 8
Fig. 8

Calculated average PE (〈PE〉 for PE1i i = 2, 3, 4) and CT (〈CT〉 for CT ij i, j ≠ 1) in the four-channel YI when a phase change of 0.5 × 2π is introduced in channel 1 versus the CCD camera distance L. Note the two matching positions: L = 45.9 and L = 61.4 mm.

Fig. 9
Fig. 9

Calculated PE (PE1i i = 2, 3, 4) and CT (CT ij i, j ≠ 1) in the four-channel YI when the phase change introduced in channel 1 is gradually increased from 0 to 2 × 2π.

Fig. 10
Fig. 10

(A) Measured phase changes Δφ12, Δφ23, and Δφ14 as a function of time in the four-channel YI when a phase change of 2π is introduced in channels 1 and 3 and a phase change of 2 × 2π is introduced in channel 2 simultaneously. (B) Phase changes that occur in channels 1, 2, and 3 (Δφ1, Δφ2, and Δφ3, respectively). (C) Measured phase changes Δφ14, Δφ24, and Δφ34 that correspond to phase changes occurring in channels 1, 2, and 3, respectively.

Fig. 11
Fig. 11

Measured phase changes Δφ12, Δφ13, and Δφ14 versus the refractive-index change when glucose solutions, which correspond to phase changes of 2π and 2 × 2π, are introduced into channel 1.

Fig. 12
Fig. 12

Algorithm flow chart for the calculation of PE and CT.

Tables (4)

Tables Icon

Table 1 Measured Phase Changes for Each Pair of Channels in the Four-Channel YI When a Phase Change of 0.44 × 2π Is Introduced into Channel 1 and, Respectively, Channel 4a

Tables Icon

Table 2 Calculated Maximum PE and CT for Three Configurations of the Four-Channel YI When No Spatial-Frequency Matching Is Present and L = 60 mm

Tables Icon

Table 3 Measured PE (PE12, PE13, and PE14) and CT (CT23, CT34, CT24) in the Four-Channel YI for Different Distances between the CCD Camera and the Chip Endfacea

Tables Icon

Table 4 Measured PE and CT in the Four-Channel YI When the Reduction Schemes of Windowing, an Increase of Spatial-Frequency Resolution, and Matching are Applied Separately and in Combination with One Another

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Iy=NI0+2I0i, j=1;i<jNcosΔΦijy+Δφij,
ΔΦijy=2πλdijL y+2πλdijLd1i+ 12 dij,
kij=1λdijL.
Δφij=2πλ l Neffn Δnij,
Δnij=dijlLNeffn-1 Δyij.

Metrics