Abstract

We use precise T-matrix calculations for prolate and oblate spheroids, Chebyshev particles, and spheres cut by a plane to study the evolution of Lorenz-Mie morphology-dependent resonances (MDRs) with increasing asphericity of nearly spherical particles in random orientation. We show that, in the case of spheroids and Chebyshev particles, the deformation of a sphere by as little as one hundredth of a wavelength essentially annihilates supernarrow MDRs, whereas significantly larger asphericities are needed to suppress broader resonance features. The MDR position and profile are also affected when the deviation of the particle shape is increased from that of a perfect sphere. In the case of a sphere cut by a plane, the supernarrow MDRs are much more resistant to an increase in asphericity and do not change their position and profile. These findings are consistent with the widely accepted physical interpretation of the Lorenz-Mie MDRs.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.
  2. M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, Cambridge, UK, 2002).
  3. E. J. Davis, G. Schweiger, The Airborne Microparticle (Springer, Berlin, 2002).
    [CrossRef]
  4. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).
    [CrossRef]
  5. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
    [CrossRef]
  6. P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
    [CrossRef]
  7. P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 17, 3019–3021 (1978).
    [CrossRef] [PubMed]
  8. W. J. Wiscombe, A. Mugnai, “Single scattering from nonspherical Chebyshev particles: a compendium of calculations,” (National Aeronautics and Space Administration, Washington, D.C., 1986).
  9. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  10. M. I. Mishchenko, L. D. Travis, A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996).
    [CrossRef] [PubMed]
  11. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, Cambridge, UK, 1992).
    [CrossRef]
  12. W. T. Grandy, Scattering of Waves from Large Spheres (Cambridge U. Press, Cambridge, UK, 2000).
    [CrossRef]
  13. G. Roll, G. Schweiger, “Geometrical optics model of Mie resonances,” J. Opt. Soc. Am. A 17, 1301–1311 (2000).
    [CrossRef]
  14. P. Chýlek, V. Ramaswamy, A. Ashkin, J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22, 2302–2307 (1983).
    [CrossRef] [PubMed]
  15. M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 2000).
  16. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79/80, 775–824 (2003).
    [CrossRef]

2003 (1)

F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79/80, 775–824 (2003).
[CrossRef]

2000 (1)

1996 (1)

1991 (1)

1984 (1)

1983 (1)

1978 (1)

1971 (1)

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
[CrossRef]

Ashkin, A.

Barber, P. W.

P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
[CrossRef]

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

Benner, R. E.

S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

Chýlek, P.

Conwell, P. R.

Davis, E. J.

E. J. Davis, G. Schweiger, The Airborne Microparticle (Springer, Berlin, 2002).
[CrossRef]

Dziedzic, J. M.

Grandy, W. T.

W. T. Grandy, Scattering of Waves from Large Spheres (Cambridge U. Press, Cambridge, UK, 2000).
[CrossRef]

Hill, S. C.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

Kahnert, F. M.

F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79/80, 775–824 (2003).
[CrossRef]

Kiehl, J. T.

Ko, M. K. W.

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, Cambridge, UK, 2002).

Macke, A.

Mishchenko, M. I.

Mugnai, A.

W. J. Wiscombe, A. Mugnai, “Single scattering from nonspherical Chebyshev particles: a compendium of calculations,” (National Aeronautics and Space Administration, Washington, D.C., 1986).

Nussenzveig, H. M.

H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, Cambridge, UK, 1992).
[CrossRef]

Ramaswamy, V.

Roll, G.

Rushforth, C. K.

Schweiger, G.

Travis, L. D.

M. I. Mishchenko, L. D. Travis, A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996).
[CrossRef] [PubMed]

M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, Cambridge, UK, 2002).

Waterman, P. C.

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
[CrossRef]

Wiscombe, W. J.

W. J. Wiscombe, A. Mugnai, “Single scattering from nonspherical Chebyshev particles: a compendium of calculations,” (National Aeronautics and Space Administration, Washington, D.C., 1986).

Appl. Opt. (3)

J. Opt. Soc. Am. A (3)

J. Quant. Spectrosc. Radiat. Transfer (1)

F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79/80, 775–824 (2003).
[CrossRef]

Phys. Rev. D (1)

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
[CrossRef]

Other (8)

W. J. Wiscombe, A. Mugnai, “Single scattering from nonspherical Chebyshev particles: a compendium of calculations,” (National Aeronautics and Space Administration, Washington, D.C., 1986).

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge U. Press, Cambridge, UK, 1992).
[CrossRef]

W. T. Grandy, Scattering of Waves from Large Spheres (Cambridge U. Press, Cambridge, UK, 2000).
[CrossRef]

M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 2000).

S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, Cambridge, UK, 2002).

E. J. Davis, G. Schweiger, The Airborne Microparticle (Springer, Berlin, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

T-matrix computations of the normalized extinction and asymmetry parameter for spheres and equal-volume oblate spheroids in random orientation in the neighborhood of the a 38 1 Lorenz-Mie resonance.

Fig. 2
Fig. 2

As in Fig. 1, but for prolate spheroids.

Fig. 3
Fig. 3

As in Fig. 1, but for Chebyshev particles.

Fig. 4
Fig. 4

As in Fig. 1, but for Chebyshev particles.

Fig. 5
Fig. 5

As in Fig. 2, but for a wider range of size parameters. The data were computed with a size parameter step size of 0.0005.

Fig. 6
Fig. 6

Normalized extinction versus volume-equivalent-sphere size parameter and orientation angle for prolate spheroids with a relative refractive index of 1.4 and an axis ratio of a/b = 0.9. The data were computed with a size parameter step size of 0.00025 and an orientation angle step size of 0.5°.

Fig. 7
Fig. 7

Sphere cut by a plane.

Fig. 8
Fig. 8

As in Fig. 1, but for SCBP.

Metrics