Abstract

We demonstrate stable operation of a diode-pumped cw Raman ring laser in diatomic hydrogen gas. Doppler-induced asymmetry between the the forward and the backward Raman gains leads to inherent unidirectional operation in the forward direction without intracavity optical elements. Use of the ring-cavity geometry dilutes the deleterious effects of thermal lensing and significantly reduces optical feedback to the pump laser.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Brasseur, P. A. Roos, K. S. Repasky, J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16, 1305–1312 (1999).
    [CrossRef]
  2. J. K. Brasseur, R. F. Teehan, P. A. Roos, J. L. Carlsten, “High-power deuterium Raman laser at 632 nm,” Appl. Opt., submitted for publication.
  3. P. A. Roos, J. K. Brasseur, J. L. Carlsten, “Diode-pumped nonresonant continuous-wave Raman laser in H2 with resonant optical feedback stabilization,” Opt. Lett. 24, 1130–1132 (1999).
    [CrossRef]
  4. L. S. Meng, K. S. Repasky, P. A. Roos, J. L. Carlsten, “Widely tunable continuous-wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser,” Opt. Lett. 25, 472–474 (2000).
    [CrossRef]
  5. L. S. Meng, P. A. Roos, K. S. Repasky, J. L. Carlsten, “High-conversion-efficiency, diode-pumped continuous-wave Raman laser,” Opt. Lett. 26, 426–428 (2001).
    [CrossRef]
  6. J. K. Brasseur, “Construction and noise studies of a continuous-wave Raman laser,” Ph.D. dissertation (Department of Physics, Montana State University, Bozeman, Mont., (1998).
  7. L. S. Meng, “Continuous-wave Raman laser in H2: semiclassical theory and diode pumping experiments,” Ph.D. dissertation (Department of Physics, Montana State University, Bozeman, Mont., 2002).
  8. P. A. Roos, “The diode-pumped continuous-wave Raman laser: classical, quantum, and thermo-optic fundamentals,” Ph.D. dissertation (Department of Physics, Montana State University, Bozeman, Mont., 2002).
  9. P. A. Roos, J. K. Brasseur, J. L. Carlsten, “Intensity-dependent refractive index in a nonresonant cw Raman laser that is due to thermal heating of the Raman active gas,” J. Opt. Soc. Am. B 17, 758–763 (2000).
    [CrossRef]
  10. J. Bienfang, W. Rudolph, P. A. Roos, L. S. Meng, J. L. Carlsten, “Steady-state thermo-optic model of a continuous-wave Raman laser,” J. Opt. Soc Am. B 19, 1318–1325 (2002).
    [CrossRef]
  11. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  12. J. Heppner, C. O. Weiss, “Far-infrared ring laser,” Appl. Phys. Lett. 33, 590–592 (1978).
    [CrossRef]
  13. J. R. Murray, A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrose. 42, 1–26 (1972).
    [CrossRef]
  14. P. A. Roos, L. S. Meng, J. L. Carlsten, “Using an injection-locked diode laser to pump a cw Raman laser,” IEEE J. Quantum Electron. 36, 1280–1283 (2000).
    [CrossRef]
  15. R. Vilaseca, J. Martorell, R. Corbalan, P. Laguarta, “Theoretical study of bi-directional emission in optically-pumped ring-cavity FIR lasers,” Opt. Commun. 70, 131–136 (1989).
    [CrossRef]
  16. K. Matsushima, N. Higashida, N. Sokabe, T. Ariyasu, “Unidirectionality of an optically pumped far infrared ring laser,” Opt. Commun. 117, 462–468 (1995).
    [CrossRef]
  17. K. Matsushima, K. Hirata, T. Ariyasu, N. Sokabe, “Anisotropic unidirectional operation of an optically-pumped CH3OH ring laser,” Opt. Commun. 130, 272–278 (1996).
    [CrossRef]

2002 (1)

J. Bienfang, W. Rudolph, P. A. Roos, L. S. Meng, J. L. Carlsten, “Steady-state thermo-optic model of a continuous-wave Raman laser,” J. Opt. Soc Am. B 19, 1318–1325 (2002).
[CrossRef]

2001 (1)

2000 (3)

1999 (2)

1996 (1)

K. Matsushima, K. Hirata, T. Ariyasu, N. Sokabe, “Anisotropic unidirectional operation of an optically-pumped CH3OH ring laser,” Opt. Commun. 130, 272–278 (1996).
[CrossRef]

1995 (1)

K. Matsushima, N. Higashida, N. Sokabe, T. Ariyasu, “Unidirectionality of an optically pumped far infrared ring laser,” Opt. Commun. 117, 462–468 (1995).
[CrossRef]

1989 (1)

R. Vilaseca, J. Martorell, R. Corbalan, P. Laguarta, “Theoretical study of bi-directional emission in optically-pumped ring-cavity FIR lasers,” Opt. Commun. 70, 131–136 (1989).
[CrossRef]

1978 (1)

J. Heppner, C. O. Weiss, “Far-infrared ring laser,” Appl. Phys. Lett. 33, 590–592 (1978).
[CrossRef]

1972 (1)

J. R. Murray, A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrose. 42, 1–26 (1972).
[CrossRef]

Ariyasu, T.

K. Matsushima, K. Hirata, T. Ariyasu, N. Sokabe, “Anisotropic unidirectional operation of an optically-pumped CH3OH ring laser,” Opt. Commun. 130, 272–278 (1996).
[CrossRef]

K. Matsushima, N. Higashida, N. Sokabe, T. Ariyasu, “Unidirectionality of an optically pumped far infrared ring laser,” Opt. Commun. 117, 462–468 (1995).
[CrossRef]

Bienfang, J.

J. Bienfang, W. Rudolph, P. A. Roos, L. S. Meng, J. L. Carlsten, “Steady-state thermo-optic model of a continuous-wave Raman laser,” J. Opt. Soc Am. B 19, 1318–1325 (2002).
[CrossRef]

Brasseur, J. K.

Carlsten, J. L.

Corbalan, R.

R. Vilaseca, J. Martorell, R. Corbalan, P. Laguarta, “Theoretical study of bi-directional emission in optically-pumped ring-cavity FIR lasers,” Opt. Commun. 70, 131–136 (1989).
[CrossRef]

Heppner, J.

J. Heppner, C. O. Weiss, “Far-infrared ring laser,” Appl. Phys. Lett. 33, 590–592 (1978).
[CrossRef]

Higashida, N.

K. Matsushima, N. Higashida, N. Sokabe, T. Ariyasu, “Unidirectionality of an optically pumped far infrared ring laser,” Opt. Commun. 117, 462–468 (1995).
[CrossRef]

Hirata, K.

K. Matsushima, K. Hirata, T. Ariyasu, N. Sokabe, “Anisotropic unidirectional operation of an optically-pumped CH3OH ring laser,” Opt. Commun. 130, 272–278 (1996).
[CrossRef]

Javan, A.

J. R. Murray, A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrose. 42, 1–26 (1972).
[CrossRef]

Laguarta, P.

R. Vilaseca, J. Martorell, R. Corbalan, P. Laguarta, “Theoretical study of bi-directional emission in optically-pumped ring-cavity FIR lasers,” Opt. Commun. 70, 131–136 (1989).
[CrossRef]

Martorell, J.

R. Vilaseca, J. Martorell, R. Corbalan, P. Laguarta, “Theoretical study of bi-directional emission in optically-pumped ring-cavity FIR lasers,” Opt. Commun. 70, 131–136 (1989).
[CrossRef]

Matsushima, K.

K. Matsushima, K. Hirata, T. Ariyasu, N. Sokabe, “Anisotropic unidirectional operation of an optically-pumped CH3OH ring laser,” Opt. Commun. 130, 272–278 (1996).
[CrossRef]

K. Matsushima, N. Higashida, N. Sokabe, T. Ariyasu, “Unidirectionality of an optically pumped far infrared ring laser,” Opt. Commun. 117, 462–468 (1995).
[CrossRef]

Meng, L. S.

J. Bienfang, W. Rudolph, P. A. Roos, L. S. Meng, J. L. Carlsten, “Steady-state thermo-optic model of a continuous-wave Raman laser,” J. Opt. Soc Am. B 19, 1318–1325 (2002).
[CrossRef]

L. S. Meng, P. A. Roos, K. S. Repasky, J. L. Carlsten, “High-conversion-efficiency, diode-pumped continuous-wave Raman laser,” Opt. Lett. 26, 426–428 (2001).
[CrossRef]

P. A. Roos, L. S. Meng, J. L. Carlsten, “Using an injection-locked diode laser to pump a cw Raman laser,” IEEE J. Quantum Electron. 36, 1280–1283 (2000).
[CrossRef]

L. S. Meng, K. S. Repasky, P. A. Roos, J. L. Carlsten, “Widely tunable continuous-wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser,” Opt. Lett. 25, 472–474 (2000).
[CrossRef]

L. S. Meng, “Continuous-wave Raman laser in H2: semiclassical theory and diode pumping experiments,” Ph.D. dissertation (Department of Physics, Montana State University, Bozeman, Mont., 2002).

Murray, J. R.

J. R. Murray, A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrose. 42, 1–26 (1972).
[CrossRef]

Repasky, K. S.

Roos, P. A.

J. Bienfang, W. Rudolph, P. A. Roos, L. S. Meng, J. L. Carlsten, “Steady-state thermo-optic model of a continuous-wave Raman laser,” J. Opt. Soc Am. B 19, 1318–1325 (2002).
[CrossRef]

L. S. Meng, P. A. Roos, K. S. Repasky, J. L. Carlsten, “High-conversion-efficiency, diode-pumped continuous-wave Raman laser,” Opt. Lett. 26, 426–428 (2001).
[CrossRef]

P. A. Roos, J. K. Brasseur, J. L. Carlsten, “Intensity-dependent refractive index in a nonresonant cw Raman laser that is due to thermal heating of the Raman active gas,” J. Opt. Soc. Am. B 17, 758–763 (2000).
[CrossRef]

P. A. Roos, L. S. Meng, J. L. Carlsten, “Using an injection-locked diode laser to pump a cw Raman laser,” IEEE J. Quantum Electron. 36, 1280–1283 (2000).
[CrossRef]

L. S. Meng, K. S. Repasky, P. A. Roos, J. L. Carlsten, “Widely tunable continuous-wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser,” Opt. Lett. 25, 472–474 (2000).
[CrossRef]

P. A. Roos, J. K. Brasseur, J. L. Carlsten, “Diode-pumped nonresonant continuous-wave Raman laser in H2 with resonant optical feedback stabilization,” Opt. Lett. 24, 1130–1132 (1999).
[CrossRef]

J. K. Brasseur, P. A. Roos, K. S. Repasky, J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16, 1305–1312 (1999).
[CrossRef]

P. A. Roos, “The diode-pumped continuous-wave Raman laser: classical, quantum, and thermo-optic fundamentals,” Ph.D. dissertation (Department of Physics, Montana State University, Bozeman, Mont., 2002).

J. K. Brasseur, R. F. Teehan, P. A. Roos, J. L. Carlsten, “High-power deuterium Raman laser at 632 nm,” Appl. Opt., submitted for publication.

Rudolph, W.

J. Bienfang, W. Rudolph, P. A. Roos, L. S. Meng, J. L. Carlsten, “Steady-state thermo-optic model of a continuous-wave Raman laser,” J. Opt. Soc Am. B 19, 1318–1325 (2002).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Sokabe, N.

K. Matsushima, K. Hirata, T. Ariyasu, N. Sokabe, “Anisotropic unidirectional operation of an optically-pumped CH3OH ring laser,” Opt. Commun. 130, 272–278 (1996).
[CrossRef]

K. Matsushima, N. Higashida, N. Sokabe, T. Ariyasu, “Unidirectionality of an optically pumped far infrared ring laser,” Opt. Commun. 117, 462–468 (1995).
[CrossRef]

Teehan, R. F.

J. K. Brasseur, R. F. Teehan, P. A. Roos, J. L. Carlsten, “High-power deuterium Raman laser at 632 nm,” Appl. Opt., submitted for publication.

Vilaseca, R.

R. Vilaseca, J. Martorell, R. Corbalan, P. Laguarta, “Theoretical study of bi-directional emission in optically-pumped ring-cavity FIR lasers,” Opt. Commun. 70, 131–136 (1989).
[CrossRef]

Weiss, C. O.

J. Heppner, C. O. Weiss, “Far-infrared ring laser,” Appl. Phys. Lett. 33, 590–592 (1978).
[CrossRef]

Appl. Phys. Lett. (1)

J. Heppner, C. O. Weiss, “Far-infrared ring laser,” Appl. Phys. Lett. 33, 590–592 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. A. Roos, L. S. Meng, J. L. Carlsten, “Using an injection-locked diode laser to pump a cw Raman laser,” IEEE J. Quantum Electron. 36, 1280–1283 (2000).
[CrossRef]

J. Mol. Spectrose. (1)

J. R. Murray, A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrose. 42, 1–26 (1972).
[CrossRef]

J. Opt. Soc Am. B (1)

J. Bienfang, W. Rudolph, P. A. Roos, L. S. Meng, J. L. Carlsten, “Steady-state thermo-optic model of a continuous-wave Raman laser,” J. Opt. Soc Am. B 19, 1318–1325 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

R. Vilaseca, J. Martorell, R. Corbalan, P. Laguarta, “Theoretical study of bi-directional emission in optically-pumped ring-cavity FIR lasers,” Opt. Commun. 70, 131–136 (1989).
[CrossRef]

K. Matsushima, N. Higashida, N. Sokabe, T. Ariyasu, “Unidirectionality of an optically pumped far infrared ring laser,” Opt. Commun. 117, 462–468 (1995).
[CrossRef]

K. Matsushima, K. Hirata, T. Ariyasu, N. Sokabe, “Anisotropic unidirectional operation of an optically-pumped CH3OH ring laser,” Opt. Commun. 130, 272–278 (1996).
[CrossRef]

Opt. Lett. (3)

Other (5)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

J. K. Brasseur, R. F. Teehan, P. A. Roos, J. L. Carlsten, “High-power deuterium Raman laser at 632 nm,” Appl. Opt., submitted for publication.

J. K. Brasseur, “Construction and noise studies of a continuous-wave Raman laser,” Ph.D. dissertation (Department of Physics, Montana State University, Bozeman, Mont., (1998).

L. S. Meng, “Continuous-wave Raman laser in H2: semiclassical theory and diode pumping experiments,” Ph.D. dissertation (Department of Physics, Montana State University, Bozeman, Mont., 2002).

P. A. Roos, “The diode-pumped continuous-wave Raman laser: classical, quantum, and thermo-optic fundamentals,” Ph.D. dissertation (Department of Physics, Montana State University, Bozeman, Mont., 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simple diagram of the Raman ring laser cavity. The reflection angle ϕ is small. The mirror denoted with the subscript 0 is the input coupler for the pump and the output coupler for the Stokes. The other three mirrors are identical and are chosen as highly reflective as possible. Hydrogen gas fills the entire intracavity volume.

Fig. 2
Fig. 2

Experimental setup used to demonstrate stable operation of the cw Raman ring laser: λ/2, half-wave plate; PBS, polarizing beam splitter; MML, mode-matching lenses; HFC, high-finesse cavity; D1, transmitted pump detector; D2, Stokes detector; D3, error signal detector.

Fig. 3
Fig. 3

Transmitted pump power (squares) on the left axis and output Stokes power (circles) on the right axis as functions of the incident pump power. The dotted curves represent the theoretical predictions without heating, the dashed curves represent the predictions for the analogous two-mirror linear cavity with heating, and the solid curves represent the predictions for the four-mirror bow-tie ring cavity with heating.

Fig. 4
Fig. 4

Exaggerated forward and backward gain profiles for (a) the FIR laser and (b) the cw Raman ring laser. The cw Raman laser exhibits stable unidirectional operation in the forward direction in the vicinity of the two-photon line center, whereas the FIR laser exhibits a directional switch near the FIR line center where the forward and backward gains cross. The Raman system may exhibit directional switching for larger detunings to either side of the transition line center.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Pp=P11-Rs,rt,
Ps=λpλs4Tp,0P1Pincηinc1-Rs,rt1/2-P11-Rp,rt,
P1λp+λs16α tan-1L/b

Metrics