Abstract

We demonstrate and investigate a peculiar mode of cw Yb3+-doped crystal laser operation when two emissions, at two independently tunable wavelengths, are simultaneously produced. Both emissions are generated from a single pumped volume and take place in either a single beam or spatially separated beams. The laser employs original two-channel cavities that use a passive self-injection-locking (PSIL) control to reduce intracavity loss. The advantages of the application of the PSIL technique and some limitations are shown. The conditions for two-wavelength multimode operation of the cw quasi-three-level diode-pumped Yb3+ lasers and the peculiarity of such an operation are carried out both theoretically and experimentally. The results reported are based on the example of a Yb3+:GGG laser but similar results are also obtained with a Yb3+:YAG laser. The laser operates in the 1023–1033-nm (1030–1040-nm) range with a total output power of 0.4 W. A two-wavelength, single longitudinal mode generation is also obtained.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1091 (1991).
    [CrossRef] [PubMed]
  2. T. Taira, J. Saikawa, T. Kobayashi, R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum. Electron. 3, 100–104 (1997).
    [CrossRef]
  3. F. Druon, F. Augé, F. Balembois, P. Georges, A. Brun, A. Aron, F. Mougel, G. Aka, D. Vivien, “Very efficient, tunable, zero-line diode-pumped continuous-wave Yb3+Ca4LnO(BO3)3 (Ln = Gd, Y) lasers at room temperature and application to miniature lasers,” J. Opt. Soc. Am. B 17, 18–22 (2000), and references therein.
    [CrossRef]
  4. V. V. Ter-Mikirtychev, V. A. Fromzel, “Directly single-diode-pumped continuous-wave Yb3+:YAG laser tunable in the 1047–1051-nm wavelength range,” Appl. Opt. 39, 4964–4969 (2000).
    [CrossRef]
  5. U. Brauch, A. Giesen, M. Karszewski, Chr. Stewen, A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20, 713–715 (1995).
    [CrossRef] [PubMed]
  6. H. Bruesselbach, D. S. Sumida, “69-W-average-power Yb:YAG laser,” Opt. Lett. 21, 480–482 (1996).
    [CrossRef] [PubMed]
  7. T. Y. Fan, J. Ochoa, “Tunable single-frequency Yb:YAG laser with 1-W output power using twisted-mode technique,” IEEE Photon. Technol. Lett. 7, 1137–1139 (1995).
    [CrossRef]
  8. G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graft, M. Moser, U. Keller, L. R. Brovelli, C. Harder, “Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 187–189.
  9. T. Kasamatsu, T. Sumiyoshi, H. Sekita, “Laser-diode-pumped Yb:YAG laser as a new pump source and its application to an Er3+, Yb3+-codoped high-output-power fiber amplifier,” Appl. Phys. B 69, 491–495 (1999).
    [CrossRef]
  10. F. Augé, F. Mougel, F. Balembois, P. Georges, A. Brun, D. Vivien, “Advanced tunability and high-efficiency of a diode-pumped Yb3+:Ca4GdO(BO3)3 laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), Postconference Digest, pp. 392–393.
  11. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, New York, 1996).
    [CrossRef]
  12. M. Gorris-Neveux, M. Nenchev, R. Barbé, J.-C. Keller, “A two-wavelength passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995), and references therein.
    [CrossRef]
  13. M. Deneva, D. Slavov, E. Stoykova, M. Nenchev, “Improved passive self-injection locking method for spectral control of dye and Ti3+:Al2O3 lasers using two-step pulse pumping,” Opt. Commun. 139, 287–298 (1997).
    [CrossRef]
  14. R. Scheps, J. Myers, “Doubly resonant Ti:sapphire laser,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 60–63.
  15. F. Siebe, K. Siebert, R. Leonhardt, H. Roskos, “A fully tunable dual-color CW Ti3+:Al2O3 laser,” IEEE J. Quantum. Electron. 35, 1731–1736 (1999).
    [CrossRef]
  16. D. G. Slavov, M. N. Nenchev, “A comparative study of approaches for spectral control of Ti:sapphire lasers,” Opt. Commun. 200, 283–301 (2001).
    [CrossRef]
  17. H. Lotem, Z. Pan, M. Dagenais, “Tunable dual-wavelength continuous-wave diode laser operated at 830 nm,” Appl. Opt. 32, 5270–5273 (1993).
    [CrossRef] [PubMed]
  18. O. Svelto, Principles of Lasers, 4th ed., translated by D. Channa, (Plenum, New York, 1998).
  19. S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
    [CrossRef]
  20. S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, G. Boulon, “Diode-pumped cw operation of Yb:GGG laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 170–171.
  21. K. I. Martin, W. A. Clarkson, D. C. Hanna, “Limitations imposed by spatial hole burning on the single-frequency performance of unidirectional ring lasers,” Opt. Commun. 125, 359–368 (1996).
    [CrossRef]

2003 (1)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

2001 (1)

D. G. Slavov, M. N. Nenchev, “A comparative study of approaches for spectral control of Ti:sapphire lasers,” Opt. Commun. 200, 283–301 (2001).
[CrossRef]

2000 (2)

1999 (2)

T. Kasamatsu, T. Sumiyoshi, H. Sekita, “Laser-diode-pumped Yb:YAG laser as a new pump source and its application to an Er3+, Yb3+-codoped high-output-power fiber amplifier,” Appl. Phys. B 69, 491–495 (1999).
[CrossRef]

F. Siebe, K. Siebert, R. Leonhardt, H. Roskos, “A fully tunable dual-color CW Ti3+:Al2O3 laser,” IEEE J. Quantum. Electron. 35, 1731–1736 (1999).
[CrossRef]

1997 (2)

M. Deneva, D. Slavov, E. Stoykova, M. Nenchev, “Improved passive self-injection locking method for spectral control of dye and Ti3+:Al2O3 lasers using two-step pulse pumping,” Opt. Commun. 139, 287–298 (1997).
[CrossRef]

T. Taira, J. Saikawa, T. Kobayashi, R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum. Electron. 3, 100–104 (1997).
[CrossRef]

1996 (2)

H. Bruesselbach, D. S. Sumida, “69-W-average-power Yb:YAG laser,” Opt. Lett. 21, 480–482 (1996).
[CrossRef] [PubMed]

K. I. Martin, W. A. Clarkson, D. C. Hanna, “Limitations imposed by spatial hole burning on the single-frequency performance of unidirectional ring lasers,” Opt. Commun. 125, 359–368 (1996).
[CrossRef]

1995 (3)

T. Y. Fan, J. Ochoa, “Tunable single-frequency Yb:YAG laser with 1-W output power using twisted-mode technique,” IEEE Photon. Technol. Lett. 7, 1137–1139 (1995).
[CrossRef]

M. Gorris-Neveux, M. Nenchev, R. Barbé, J.-C. Keller, “A two-wavelength passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995), and references therein.
[CrossRef]

U. Brauch, A. Giesen, M. Karszewski, Chr. Stewen, A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20, 713–715 (1995).
[CrossRef] [PubMed]

1993 (1)

1991 (1)

Aggarwal, R. L.

Aka, G.

Aron, A.

Augé, F.

F. Druon, F. Augé, F. Balembois, P. Georges, A. Brun, A. Aron, F. Mougel, G. Aka, D. Vivien, “Very efficient, tunable, zero-line diode-pumped continuous-wave Yb3+Ca4LnO(BO3)3 (Ln = Gd, Y) lasers at room temperature and application to miniature lasers,” J. Opt. Soc. Am. B 17, 18–22 (2000), and references therein.
[CrossRef]

F. Augé, F. Mougel, F. Balembois, P. Georges, A. Brun, D. Vivien, “Advanced tunability and high-efficiency of a diode-pumped Yb3+:Ca4GdO(BO3)3 laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), Postconference Digest, pp. 392–393.

Balembois, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

F. Druon, F. Augé, F. Balembois, P. Georges, A. Brun, A. Aron, F. Mougel, G. Aka, D. Vivien, “Very efficient, tunable, zero-line diode-pumped continuous-wave Yb3+Ca4LnO(BO3)3 (Ln = Gd, Y) lasers at room temperature and application to miniature lasers,” J. Opt. Soc. Am. B 17, 18–22 (2000), and references therein.
[CrossRef]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, G. Boulon, “Diode-pumped cw operation of Yb:GGG laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 170–171.

F. Augé, F. Mougel, F. Balembois, P. Georges, A. Brun, D. Vivien, “Advanced tunability and high-efficiency of a diode-pumped Yb3+:Ca4GdO(BO3)3 laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), Postconference Digest, pp. 392–393.

Barbé, R.

M. Gorris-Neveux, M. Nenchev, R. Barbé, J.-C. Keller, “A two-wavelength passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995), and references therein.
[CrossRef]

Boulon, G.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, G. Boulon, “Diode-pumped cw operation of Yb:GGG laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 170–171.

Brauch, U.

Brenier, A.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, G. Boulon, “Diode-pumped cw operation of Yb:GGG laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 170–171.

Brovelli, L. R.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graft, M. Moser, U. Keller, L. R. Brovelli, C. Harder, “Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Bruesselbach, H.

Brun, A.

F. Druon, F. Augé, F. Balembois, P. Georges, A. Brun, A. Aron, F. Mougel, G. Aka, D. Vivien, “Very efficient, tunable, zero-line diode-pumped continuous-wave Yb3+Ca4LnO(BO3)3 (Ln = Gd, Y) lasers at room temperature and application to miniature lasers,” J. Opt. Soc. Am. B 17, 18–22 (2000), and references therein.
[CrossRef]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, G. Boulon, “Diode-pumped cw operation of Yb:GGG laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 170–171.

F. Augé, F. Mougel, F. Balembois, P. Georges, A. Brun, D. Vivien, “Advanced tunability and high-efficiency of a diode-pumped Yb3+:Ca4GdO(BO3)3 laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), Postconference Digest, pp. 392–393.

Byer, R. L.

T. Taira, J. Saikawa, T. Kobayashi, R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum. Electron. 3, 100–104 (1997).
[CrossRef]

Channa, D.

O. Svelto, Principles of Lasers, 4th ed., translated by D. Channa, (Plenum, New York, 1998).

Chénais, S.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, G. Boulon, “Diode-pumped cw operation of Yb:GGG laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 170–171.

Choi, H. K.

Clarkson, W. A.

K. I. Martin, W. A. Clarkson, D. C. Hanna, “Limitations imposed by spatial hole burning on the single-frequency performance of unidirectional ring lasers,” Opt. Commun. 125, 359–368 (1996).
[CrossRef]

Dagenais, M.

Demtröder, W.

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, New York, 1996).
[CrossRef]

Deneva, M.

M. Deneva, D. Slavov, E. Stoykova, M. Nenchev, “Improved passive self-injection locking method for spectral control of dye and Ti3+:Al2O3 lasers using two-step pulse pumping,” Opt. Commun. 139, 287–298 (1997).
[CrossRef]

Druon, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

F. Druon, F. Augé, F. Balembois, P. Georges, A. Brun, A. Aron, F. Mougel, G. Aka, D. Vivien, “Very efficient, tunable, zero-line diode-pumped continuous-wave Yb3+Ca4LnO(BO3)3 (Ln = Gd, Y) lasers at room temperature and application to miniature lasers,” J. Opt. Soc. Am. B 17, 18–22 (2000), and references therein.
[CrossRef]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, G. Boulon, “Diode-pumped cw operation of Yb:GGG laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 170–171.

Fan, T. Y.

T. Y. Fan, J. Ochoa, “Tunable single-frequency Yb:YAG laser with 1-W output power using twisted-mode technique,” IEEE Photon. Technol. Lett. 7, 1137–1139 (1995).
[CrossRef]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1091 (1991).
[CrossRef] [PubMed]

Fromzel, V. A.

Georges, P.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

F. Druon, F. Augé, F. Balembois, P. Georges, A. Brun, A. Aron, F. Mougel, G. Aka, D. Vivien, “Very efficient, tunable, zero-line diode-pumped continuous-wave Yb3+Ca4LnO(BO3)3 (Ln = Gd, Y) lasers at room temperature and application to miniature lasers,” J. Opt. Soc. Am. B 17, 18–22 (2000), and references therein.
[CrossRef]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, G. Boulon, “Diode-pumped cw operation of Yb:GGG laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 170–171.

F. Augé, F. Mougel, F. Balembois, P. Georges, A. Brun, D. Vivien, “Advanced tunability and high-efficiency of a diode-pumped Yb3+:Ca4GdO(BO3)3 laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), Postconference Digest, pp. 392–393.

Giesen, A.

Gorris-Neveux, M.

M. Gorris-Neveux, M. Nenchev, R. Barbé, J.-C. Keller, “A two-wavelength passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995), and references therein.
[CrossRef]

Graft, M.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graft, M. Moser, U. Keller, L. R. Brovelli, C. Harder, “Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Hanna, D. C.

K. I. Martin, W. A. Clarkson, D. C. Hanna, “Limitations imposed by spatial hole burning on the single-frequency performance of unidirectional ring lasers,” Opt. Commun. 125, 359–368 (1996).
[CrossRef]

Harder, C.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graft, M. Moser, U. Keller, L. R. Brovelli, C. Harder, “Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Karszewski, M.

Kasamatsu, T.

T. Kasamatsu, T. Sumiyoshi, H. Sekita, “Laser-diode-pumped Yb:YAG laser as a new pump source and its application to an Er3+, Yb3+-codoped high-output-power fiber amplifier,” Appl. Phys. B 69, 491–495 (1999).
[CrossRef]

Keller, J.-C.

M. Gorris-Neveux, M. Nenchev, R. Barbé, J.-C. Keller, “A two-wavelength passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995), and references therein.
[CrossRef]

Keller, U.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graft, M. Moser, U. Keller, L. R. Brovelli, C. Harder, “Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Kobayashi, T.

T. Taira, J. Saikawa, T. Kobayashi, R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum. Electron. 3, 100–104 (1997).
[CrossRef]

Kullberg, M. P.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graft, M. Moser, U. Keller, L. R. Brovelli, C. Harder, “Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Lacovara, P.

Leonhardt, R.

F. Siebe, K. Siebert, R. Leonhardt, H. Roskos, “A fully tunable dual-color CW Ti3+:Al2O3 laser,” IEEE J. Quantum. Electron. 35, 1731–1736 (1999).
[CrossRef]

Lotem, H.

Martin, K. I.

K. I. Martin, W. A. Clarkson, D. C. Hanna, “Limitations imposed by spatial hole burning on the single-frequency performance of unidirectional ring lasers,” Opt. Commun. 125, 359–368 (1996).
[CrossRef]

Moser, M.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graft, M. Moser, U. Keller, L. R. Brovelli, C. Harder, “Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Mougel, F.

F. Druon, F. Augé, F. Balembois, P. Georges, A. Brun, A. Aron, F. Mougel, G. Aka, D. Vivien, “Very efficient, tunable, zero-line diode-pumped continuous-wave Yb3+Ca4LnO(BO3)3 (Ln = Gd, Y) lasers at room temperature and application to miniature lasers,” J. Opt. Soc. Am. B 17, 18–22 (2000), and references therein.
[CrossRef]

F. Augé, F. Mougel, F. Balembois, P. Georges, A. Brun, D. Vivien, “Advanced tunability and high-efficiency of a diode-pumped Yb3+:Ca4GdO(BO3)3 laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), Postconference Digest, pp. 392–393.

Myers, J.

R. Scheps, J. Myers, “Doubly resonant Ti:sapphire laser,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 60–63.

Nenchev, M.

M. Deneva, D. Slavov, E. Stoykova, M. Nenchev, “Improved passive self-injection locking method for spectral control of dye and Ti3+:Al2O3 lasers using two-step pulse pumping,” Opt. Commun. 139, 287–298 (1997).
[CrossRef]

M. Gorris-Neveux, M. Nenchev, R. Barbé, J.-C. Keller, “A two-wavelength passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995), and references therein.
[CrossRef]

Nenchev, M. N.

D. G. Slavov, M. N. Nenchev, “A comparative study of approaches for spectral control of Ti:sapphire lasers,” Opt. Commun. 200, 283–301 (2001).
[CrossRef]

Ochoa, J.

T. Y. Fan, J. Ochoa, “Tunable single-frequency Yb:YAG laser with 1-W output power using twisted-mode technique,” IEEE Photon. Technol. Lett. 7, 1137–1139 (1995).
[CrossRef]

Pan, Z.

Paschotta, R.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graft, M. Moser, U. Keller, L. R. Brovelli, C. Harder, “Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Roskos, H.

F. Siebe, K. Siebert, R. Leonhardt, H. Roskos, “A fully tunable dual-color CW Ti3+:Al2O3 laser,” IEEE J. Quantum. Electron. 35, 1731–1736 (1999).
[CrossRef]

Saikawa, J.

T. Taira, J. Saikawa, T. Kobayashi, R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum. Electron. 3, 100–104 (1997).
[CrossRef]

Scheps, R.

R. Scheps, J. Myers, “Doubly resonant Ti:sapphire laser,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 60–63.

Sekita, H.

T. Kasamatsu, T. Sumiyoshi, H. Sekita, “Laser-diode-pumped Yb:YAG laser as a new pump source and its application to an Er3+, Yb3+-codoped high-output-power fiber amplifier,” Appl. Phys. B 69, 491–495 (1999).
[CrossRef]

Siebe, F.

F. Siebe, K. Siebert, R. Leonhardt, H. Roskos, “A fully tunable dual-color CW Ti3+:Al2O3 laser,” IEEE J. Quantum. Electron. 35, 1731–1736 (1999).
[CrossRef]

Siebert, K.

F. Siebe, K. Siebert, R. Leonhardt, H. Roskos, “A fully tunable dual-color CW Ti3+:Al2O3 laser,” IEEE J. Quantum. Electron. 35, 1731–1736 (1999).
[CrossRef]

Slavov, D.

M. Deneva, D. Slavov, E. Stoykova, M. Nenchev, “Improved passive self-injection locking method for spectral control of dye and Ti3+:Al2O3 lasers using two-step pulse pumping,” Opt. Commun. 139, 287–298 (1997).
[CrossRef]

Slavov, D. G.

D. G. Slavov, M. N. Nenchev, “A comparative study of approaches for spectral control of Ti:sapphire lasers,” Opt. Commun. 200, 283–301 (2001).
[CrossRef]

Spuhler, G. J.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graft, M. Moser, U. Keller, L. R. Brovelli, C. Harder, “Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Stewen, Chr.

Stoykova, E.

M. Deneva, D. Slavov, E. Stoykova, M. Nenchev, “Improved passive self-injection locking method for spectral control of dye and Ti3+:Al2O3 lasers using two-step pulse pumping,” Opt. Commun. 139, 287–298 (1997).
[CrossRef]

Sumida, D. S.

Sumiyoshi, T.

T. Kasamatsu, T. Sumiyoshi, H. Sekita, “Laser-diode-pumped Yb:YAG laser as a new pump source and its application to an Er3+, Yb3+-codoped high-output-power fiber amplifier,” Appl. Phys. B 69, 491–495 (1999).
[CrossRef]

Svelto, O.

O. Svelto, Principles of Lasers, 4th ed., translated by D. Channa, (Plenum, New York, 1998).

Taira, T.

T. Taira, J. Saikawa, T. Kobayashi, R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum. Electron. 3, 100–104 (1997).
[CrossRef]

Ter-Mikirtychev, V. V.

Vivien, D.

F. Druon, F. Augé, F. Balembois, P. Georges, A. Brun, A. Aron, F. Mougel, G. Aka, D. Vivien, “Very efficient, tunable, zero-line diode-pumped continuous-wave Yb3+Ca4LnO(BO3)3 (Ln = Gd, Y) lasers at room temperature and application to miniature lasers,” J. Opt. Soc. Am. B 17, 18–22 (2000), and references therein.
[CrossRef]

F. Augé, F. Mougel, F. Balembois, P. Georges, A. Brun, D. Vivien, “Advanced tunability and high-efficiency of a diode-pumped Yb3+:Ca4GdO(BO3)3 laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), Postconference Digest, pp. 392–393.

Voss, A.

Wang, C. A.

Appl. Opt. (2)

Appl. Phys. B (1)

T. Kasamatsu, T. Sumiyoshi, H. Sekita, “Laser-diode-pumped Yb:YAG laser as a new pump source and its application to an Er3+, Yb3+-codoped high-output-power fiber amplifier,” Appl. Phys. B 69, 491–495 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Gorris-Neveux, M. Nenchev, R. Barbé, J.-C. Keller, “A two-wavelength passively self-injection locked, CW Ti3+:Al2O3 laser,” IEEE J. Quantum Electron. 31, 1253–1260 (1995), and references therein.
[CrossRef]

IEEE J. Quantum. Electron. (1)

F. Siebe, K. Siebert, R. Leonhardt, H. Roskos, “A fully tunable dual-color CW Ti3+:Al2O3 laser,” IEEE J. Quantum. Electron. 35, 1731–1736 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (1)

T. Taira, J. Saikawa, T. Kobayashi, R. L. Byer, “Diode-pumped tunable Yb:YAG miniature lasers at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum. Electron. 3, 100–104 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Y. Fan, J. Ochoa, “Tunable single-frequency Yb:YAG laser with 1-W output power using twisted-mode technique,” IEEE Photon. Technol. Lett. 7, 1137–1139 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

D. G. Slavov, M. N. Nenchev, “A comparative study of approaches for spectral control of Ti:sapphire lasers,” Opt. Commun. 200, 283–301 (2001).
[CrossRef]

M. Deneva, D. Slavov, E. Stoykova, M. Nenchev, “Improved passive self-injection locking method for spectral control of dye and Ti3+:Al2O3 lasers using two-step pulse pumping,” Opt. Commun. 139, 287–298 (1997).
[CrossRef]

K. I. Martin, W. A. Clarkson, D. C. Hanna, “Limitations imposed by spatial hole burning on the single-frequency performance of unidirectional ring lasers,” Opt. Commun. 125, 359–368 (1996).
[CrossRef]

Opt. Lett. (3)

Opt. Mater. (1)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22, 99–106 (2003).
[CrossRef]

Other (6)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brun, A. Brenier, G. Boulon, “Diode-pumped cw operation of Yb:GGG laser,” in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 170–171.

O. Svelto, Principles of Lasers, 4th ed., translated by D. Channa, (Plenum, New York, 1998).

R. Scheps, J. Myers, “Doubly resonant Ti:sapphire laser,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 60–63.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graft, M. Moser, U. Keller, L. R. Brovelli, C. Harder, “Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

F. Augé, F. Mougel, F. Balembois, P. Georges, A. Brun, D. Vivien, “Advanced tunability and high-efficiency of a diode-pumped Yb3+:Ca4GdO(BO3)3 laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1999), Postconference Digest, pp. 392–393.

W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, New York, 1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Optical schemes of the two-wavelength cw Yb-doped crystal lasers. PSIL controlled cavities for single-beam emission at two wavelengths from (a) a single-lasing volume and (b) in parallel beams. (c) Cavity with an angular separation of the channels. M1, M3, plane mirrors; M1 is a dichroic mirror; M2, M4, M5, M6, concave mirrors; GP, the near-Brewster’s angle glass plate laser output; IW1 and IW2, interference wedges. In (c) concave mirrors M7 and M9 are at optical distances from M1 equal to half of their respective radius of curvature; M8 is an intermediate mirror; FP1 and FP2, 100-µm Fabry-Perot etalons; SL1 and SL2 are positive spherical lenses.

Fig. 2
Fig. 2

(a) Computed equivalent reflectivity R eq of two-wavelength interference structures (M3-IW1-M5 and M3-IW1-IW2-M6) as a function of the wavelength and (b) transmission functions of the interference wedges for single pass T IW1,2 and double pass T IW1,2 2 for maximum wedge transmissions T IW1,2* = 0.7. The thick solid curves in (a) were calculated for the transmission maximum of each interference wedge T IW1,2* = 0.7 and for two values of R 3, 0.92 and 0.98 (R 3 = 0.92 corresponds to our experimental value). The thin solid curve in (a) represents the R eq(λ) for high-quality IW with T IW1,2* = 0.92 and for R 3 = 0.8.

Fig. 3
Fig. 3

Calculated threshold power P th, output power P out for an absorbed pump power of 5.5 W (vertical scale on the left-hand side), spectral tuning ranges Δλ S and Δλ tw for single- and two-wavelength generation without free lasing, respectively (vertical scale on the right-hand side). The horizontal axis represents the equivalent reflectivity R eq and reflectivity R 3 of mirror M 3. The calculations of P th, P out were taken for single-wavelength operation at λ0 = 1027 nm; Δλ S was calculated for tuning of λ0 symmetrically around 1027 nm and for single-wavelength operation; Δλtw was calculated for λ0 = 1027 nm and λ t tuned symmetrically around 1023.5 nm.

Fig. 4
Fig. 4

Emission σ e (λ) and absorption σ a (λ) cross sections of our 5.7% Yb-doped GGG crystal as a function of wavelength. Formulas used were fitted from the inset original experimental curves by Chenais et al.19

Fig. 5
Fig. 5

Calculated threshold absorbed power versus selected wavelength λ0 for single-wavelength operation. The thick curve corresponds to our experiment (T IW1* = 0.7, R 3 = 0.92, γ c = 0.09, and γ0 = 0.13). The thick line P th′ gives the threshold power for the free lasing in these conditions for the main cavity (M1-M2-M3). The threshold power for the free lasing, with high-quality IW1 (T IW1* = 0.92) and R 3 = 0.8, is depicted by the dashed line P th″. P th‴ is the threshold power for better lasing conditions (T IW1* = 0.92, R 3 = 0.8, γ c = 0.04, and γ0 = 0.0729).

Fig. 6
Fig. 6

Calculated output power versus selected wavelength λ0 (solid curves) and experimental points for single-wavelength operation in the PSIL scheme of Fig. 1(a): the thick curve and the points correspond to T IW1* = 0.7, R 3 = 0.92, γ0 = 0.1276; the thin curve corresponds to T IW1* = 0.92, R 3 = 0.8, γ0 = 0.0729.

Fig. 7
Fig. 7

Calculated losses γ0* for simultaneous generation at λ0 and λ f as a function of λ0 for different values of reflectivity R 3 of mirror M3 [scheme of Fig. 1(a) with mirror M6 blocked). (a) If the losses at λ f in the main cavity M1-M2-M3 are higher than γ0* for a given λ0, free lasing is suppressed by the controlled operation at λ0. Δλ S is the maximum tuning range attainable for single-wavelength operation for a given value of R 3 (with T IW1,2* = 0.7 and γ c = 0.09). In (b) we depict the same calculation for better interference wedges (T IW1,2* = 0.92) and a better crystal (γ c = 0.04). The tuning range is widened.

Fig. 8
Fig. 8

Calculated losses γ t for simultaneous generation at the two wavelengths λ0 (fixed at 1027 nm) and λ t (tuned) for different values of reflectivity R 3 of mirror M3 [scheme in Fig. 1(a)]. For a given R 3, if the losses at λ t are equal to the ones given by the corresponding curve, the laser simultaneously generates the two wavelengths λ0 and λ t . Δλtw is the maximum tuning range attainable for two-wavelength generation for a given value of R 3: (a) T IW1,2* = 0.7, γ c = 0.09 and (b) T IW1,2* = 0.92, γ c = 0.04.

Fig. 9
Fig. 9

Examples of the calculation of the cw output powers for two pairs of wavelengths by use of the system of Eqs. (1)–(5) and the condition in Eq. (6). Pumping rate R P was modeled by a function with a linear part from 0 to 5.5 W during 0.5 ms and a constant value of 5.5 W thereafter. The laser parameters are given in the text.

Fig. 10
Fig. 10

Calculated output powers P out,0 at λ0 (tuned) and P out,t at λ t (fixed at 1023.3 nm) when the two wavelengths are generated simultaneously. The circles and triangles represent the corresponding experimental points. The losses are balanced in each channel during the tuning of λ0 by an adjustment of M3 to satisfy the condition in Eq. (8).

Fig. 11
Fig. 11

Computed output power as a function of wavelength (tuning curves) for both emissions produced in different parts of the pumped volume. Solid thick curve (a) represents our experimental conditions with T IW1,2* = 0.7, R 3 = 0.92, γ0,t = 0.1276, V l = 0.3 V p ; thick curve (b) corresponds to T IW1,2* = 0.92, R 3 = 0.8, γ0,t = 0.0729, V t = 0.3 V p ; curve (c) represents the ideal case of T IW1,2* = 0.92, R 3 = 0.8, γ0,t = 0.0729, V l = 0.44 V p . The computed tuning curves for wavelengths λ0 and λ t coincide completely. Triangles and the filled circles represent the experimental points for λ0 and λ t , respectively. The inset shows the computed tuning curves for two separate single-wavelength PSIL lasers. Curve (d) represents T IW1,2* = 0.7, R 3 = 0.92, γ0,t = 0.1276, V l = V p ; Curve (e) represents T IW1,2* = 0.92, R 3 = 0.8, γ0,t = 0.0729, V l = V p .

Fig. 12
Fig. 12

Experimental tuning curves P out,0 and P out,t obtained for fixed losses in the two channels. Wavelength λ0 is tuned and λ t is fixed.

Fig. 13
Fig. 13

Oscilloscope traces of the power at each wavelength, both obtained with the scheme of Fig. 1(a). The total output power is ∼0.4 W equally distributed in each wavelength. Because of the emission in a single-lasing volume, the mode competition effect is strong and evident in (b).

Fig. 14
Fig. 14

Oscilloscope traces of the power at each wavelength, generated by use of the scheme in Fig. 1(b). No correlation between the two traces is evident. This absence of a mode competition effect is due to the oscillation at each wavelength in different parts of the pumped volume.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Nt=Nu+Ng,
dNudt=Rp-q0BeoNu-ζ0Ng-qtBetNu-ζtNg-qfBefNu-ζfNg-Nuτ,
dq0dt=Vaq0BeoNu-ζ0Ng-q0τco,
dqtdt=VaqtBetNu-ζtNg-qtτct,
dqfdt=VaqfBefNu-ζfNg-qfτcf,
σeλ=4.76 exp-λ-990216.5-2+2exp-λ-101823.33-2+15.551+0.077λ-10252-1+4.675 exp-λ-1028.5213.75-2,
σaλ=0.336 exp-λ-100023.2-2+0.15 exp-λ-102221.26-2+0.65251+0.69λ-10252-1+0.45 exp-λ-102723.9-2-0.195 exp-λ-1034210-2+0.45 exp-λ-104220.99-2-0.273 exp-λ-1053.5213.5-2+0.63.
γm=γnσem+σamσen+σan-σam-σanσem+σamσen+σanNtl.

Metrics