Abstract

Continuous coherent light conversion in a train of short pulses with good efficiency is possible with a multipass interferometer in which the frequency is shifted at every pass with an acousto-optic frequency shifter. This technique allows one to generate a spectrum made of equidistant components, interferences of which build intense light pulses. Unfortunately, both the width and efficiency of the pulses are limited by the losses undergone by the waves traveling through the interferometer cavity. Improvement of the pulse duration, the peak intensity, and the contrast can be expected in such an experiment when an amplifier is set up inside the cavity. I report on theoretical computations related to this apparatus and apply this theoretical model to a high-pressure CO2 amplifier.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Likforman, M. Mehendale, D. M. Villeneuve, M. Joffre, P. B. Corkum, “Conversion of high-power 15-fs visible pulses to the mid infrared,” Opt. Lett. 26, 99–101 (2001).
    [CrossRef]
  2. J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 µm,” Appl. Phys. B 74, S153–S156 (2002).
    [CrossRef]
  3. A. Laubereau, L. Greiter, W. Kaiser, “Intense tunable picosecond pulses in the infrared,” Appl. Phys. Lett. 25, 87–89 (1974).
    [CrossRef]
  4. P. B. Corkum, D. Keith, “Controlled switching of 10-micrometer radiation using semiconductor étalons,” J. Opt. Soc. Am. B 2, 1873–1879 (1985).
    [CrossRef]
  5. P. B. Corkum, “Amplification of picosecond 10 µm pulse in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron. 21, 216–232 (1985).
    [CrossRef]
  6. A. J. Alcock, A. C. Walker, “Generation and detection of 150-psec mode-locked pulses from a multi atmosphere CO2 laser,” Appl. Phys. Lett. 25, 299–301 (1974).
    [CrossRef]
  7. R. Kesselring, A. W. Kälin, H. J. Schötzau, F. K. Kneubül, “Picosecond CO2 laser-pulse generation and amplification,” IEEE J. Quantum Electron. 29, 997–1005 (1993).
    [CrossRef]
  8. C. V. Filip, R. Narang, S. Y. Tochitsky, C. E. Clayton, C. Joshi, “Optical Kerr switching technique for the production of a picosecond multiwavelength CO2 laser pulse,” Appl. Opt. 41, 3743–3747 (2002).
    [CrossRef] [PubMed]
  9. L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier,” Appl. Phys. Lett. 59, 499–501 (1991).
    [CrossRef]
  10. J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Teraherz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
    [CrossRef]
  11. C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma wave,” Phys. Rev. Lett. 70, 37–40 (1993).
    [CrossRef] [PubMed]
  12. M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1993).
    [CrossRef]
  13. G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Pulses generation by an active multipass interferometer,” IEEE J. Quantum Electron. 24, 580–584 (1988).
    [CrossRef]
  14. F. V. Kowalski, J. A. Squier, J. T. Pinckey, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711–713 (1987).
    [CrossRef]
  15. G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Active mode locking of a high pressure CW waveguide CO2 laser,” Appl. Phys. B 44, 107–110 (1987).
    [CrossRef]
  16. L. C. Bradley, K. L. Soohoo, C. Freed, “Absolute frequencies of lasing transition in nine CO2 isotopic species,” IEEE J. Quantum Electron. 22, 234–267 (1986).
    [CrossRef]
  17. K. Stenersen, G. Wang, “Direct optical pumping of high-pressure CO2 and N2O lasers with a pulsed HF pump laser,” IEEE J. Quantum Electron. 22, 2236–2242 (1986).
    [CrossRef]
  18. K. Stenersen, G. Wang, “New direct optical pump schemes for multiatmosphere CO2 and N2O lasers,” IEEE J. Quantum Electron. 25, 147–153 (1989).
    [CrossRef]

2002 (2)

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 µm,” Appl. Phys. B 74, S153–S156 (2002).
[CrossRef]

C. V. Filip, R. Narang, S. Y. Tochitsky, C. E. Clayton, C. Joshi, “Optical Kerr switching technique for the production of a picosecond multiwavelength CO2 laser pulse,” Appl. Opt. 41, 3743–3747 (2002).
[CrossRef] [PubMed]

2001 (1)

1993 (4)

R. Kesselring, A. W. Kälin, H. J. Schötzau, F. K. Kneubül, “Picosecond CO2 laser-pulse generation and amplification,” IEEE J. Quantum Electron. 29, 997–1005 (1993).
[CrossRef]

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Teraherz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma wave,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1993).
[CrossRef]

1991 (1)

L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier,” Appl. Phys. Lett. 59, 499–501 (1991).
[CrossRef]

1989 (1)

K. Stenersen, G. Wang, “New direct optical pump schemes for multiatmosphere CO2 and N2O lasers,” IEEE J. Quantum Electron. 25, 147–153 (1989).
[CrossRef]

1988 (1)

G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Pulses generation by an active multipass interferometer,” IEEE J. Quantum Electron. 24, 580–584 (1988).
[CrossRef]

1987 (2)

F. V. Kowalski, J. A. Squier, J. T. Pinckey, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711–713 (1987).
[CrossRef]

G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Active mode locking of a high pressure CW waveguide CO2 laser,” Appl. Phys. B 44, 107–110 (1987).
[CrossRef]

1986 (2)

L. C. Bradley, K. L. Soohoo, C. Freed, “Absolute frequencies of lasing transition in nine CO2 isotopic species,” IEEE J. Quantum Electron. 22, 234–267 (1986).
[CrossRef]

K. Stenersen, G. Wang, “Direct optical pumping of high-pressure CO2 and N2O lasers with a pulsed HF pump laser,” IEEE J. Quantum Electron. 22, 2236–2242 (1986).
[CrossRef]

1985 (2)

P. B. Corkum, D. Keith, “Controlled switching of 10-micrometer radiation using semiconductor étalons,” J. Opt. Soc. Am. B 2, 1873–1879 (1985).
[CrossRef]

P. B. Corkum, “Amplification of picosecond 10 µm pulse in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron. 21, 216–232 (1985).
[CrossRef]

1974 (2)

A. J. Alcock, A. C. Walker, “Generation and detection of 150-psec mode-locked pulses from a multi atmosphere CO2 laser,” Appl. Phys. Lett. 25, 299–301 (1974).
[CrossRef]

A. Laubereau, L. Greiter, W. Kaiser, “Intense tunable picosecond pulses in the infrared,” Appl. Phys. Lett. 25, 87–89 (1974).
[CrossRef]

Alcock, A. J.

A. J. Alcock, A. C. Walker, “Generation and detection of 150-psec mode-locked pulses from a multi atmosphere CO2 laser,” Appl. Phys. Lett. 25, 299–301 (1974).
[CrossRef]

Bourdet, G. L.

G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Pulses generation by an active multipass interferometer,” IEEE J. Quantum Electron. 24, 580–584 (1988).
[CrossRef]

G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Active mode locking of a high pressure CW waveguide CO2 laser,” Appl. Phys. B 44, 107–110 (1987).
[CrossRef]

Bradley, L. C.

L. C. Bradley, K. L. Soohoo, C. Freed, “Absolute frequencies of lasing transition in nine CO2 isotopic species,” IEEE J. Quantum Electron. 22, 234–267 (1986).
[CrossRef]

Cheung, I. W.

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 µm,” Appl. Phys. B 74, S153–S156 (2002).
[CrossRef]

Clayton, C. E.

C. V. Filip, R. Narang, S. Y. Tochitsky, C. E. Clayton, C. Joshi, “Optical Kerr switching technique for the production of a picosecond multiwavelength CO2 laser pulse,” Appl. Opt. 41, 3743–3747 (2002).
[CrossRef] [PubMed]

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1993).
[CrossRef]

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma wave,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

Corkum, P. B.

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 µm,” Appl. Phys. B 74, S153–S156 (2002).
[CrossRef]

J. P. Likforman, M. Mehendale, D. M. Villeneuve, M. Joffre, P. B. Corkum, “Conversion of high-power 15-fs visible pulses to the mid infrared,” Opt. Lett. 26, 99–101 (2001).
[CrossRef]

P. B. Corkum, D. Keith, “Controlled switching of 10-micrometer radiation using semiconductor étalons,” J. Opt. Soc. Am. B 2, 1873–1879 (1985).
[CrossRef]

P. B. Corkum, “Amplification of picosecond 10 µm pulse in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron. 21, 216–232 (1985).
[CrossRef]

Dawson, J. W.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Teraherz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Dyson, A.

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma wave,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

Everett, M.

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma wave,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1993).
[CrossRef]

Filip, C. V.

Fraser, J. M.

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 µm,” Appl. Phys. B 74, S153–S156 (2002).
[CrossRef]

Freed, C.

L. C. Bradley, K. L. Soohoo, C. Freed, “Absolute frequencies of lasing transition in nine CO2 isotopic species,” IEEE J. Quantum Electron. 22, 234–267 (1986).
[CrossRef]

Gordon, D.

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1993).
[CrossRef]

Greiter, L.

A. Laubereau, L. Greiter, W. Kaiser, “Intense tunable picosecond pulses in the infrared,” Appl. Phys. Lett. 25, 87–89 (1974).
[CrossRef]

Joffre, M.

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 µm,” Appl. Phys. B 74, S153–S156 (2002).
[CrossRef]

J. P. Likforman, M. Mehendale, D. M. Villeneuve, M. Joffre, P. B. Corkum, “Conversion of high-power 15-fs visible pulses to the mid infrared,” Opt. Lett. 26, 99–101 (2001).
[CrossRef]

Joshi, C.

C. V. Filip, R. Narang, S. Y. Tochitsky, C. E. Clayton, C. Joshi, “Optical Kerr switching technique for the production of a picosecond multiwavelength CO2 laser pulse,” Appl. Opt. 41, 3743–3747 (2002).
[CrossRef] [PubMed]

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1993).
[CrossRef]

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma wave,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

Kaiser, W.

A. Laubereau, L. Greiter, W. Kaiser, “Intense tunable picosecond pulses in the infrared,” Appl. Phys. Lett. 25, 87–89 (1974).
[CrossRef]

Kälin, A. W.

R. Kesselring, A. W. Kälin, H. J. Schötzau, F. K. Kneubül, “Picosecond CO2 laser-pulse generation and amplification,” IEEE J. Quantum Electron. 29, 997–1005 (1993).
[CrossRef]

Keith, D.

Kesselring, R.

R. Kesselring, A. W. Kälin, H. J. Schötzau, F. K. Kneubül, “Picosecond CO2 laser-pulse generation and amplification,” IEEE J. Quantum Electron. 29, 997–1005 (1993).
[CrossRef]

Kneubül, F. K.

R. Kesselring, A. W. Kälin, H. J. Schötzau, F. K. Kneubül, “Picosecond CO2 laser-pulse generation and amplification,” IEEE J. Quantum Electron. 29, 997–1005 (1993).
[CrossRef]

Kowalski, F. V.

F. V. Kowalski, J. A. Squier, J. T. Pinckey, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711–713 (1987).
[CrossRef]

Lal, A.

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma wave,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1993).
[CrossRef]

Laubereau, A.

A. Laubereau, L. Greiter, W. Kaiser, “Intense tunable picosecond pulses in the infrared,” Appl. Phys. Lett. 25, 87–89 (1974).
[CrossRef]

Leemans, W. P.

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma wave,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

Légaré, F.

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 µm,” Appl. Phys. B 74, S153–S156 (2002).
[CrossRef]

Likforman, J. P.

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 µm,” Appl. Phys. B 74, S153–S156 (2002).
[CrossRef]

J. P. Likforman, M. Mehendale, D. M. Villeneuve, M. Joffre, P. B. Corkum, “Conversion of high-power 15-fs visible pulses to the mid infrared,” Opt. Lett. 26, 99–101 (2001).
[CrossRef]

Marsh, K. A.

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma wave,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1993).
[CrossRef]

Mehendale, M.

Miller, B. I.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Teraherz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Muller, R. A.

G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Pulses generation by an active multipass interferometer,” IEEE J. Quantum Electron. 24, 580–584 (1988).
[CrossRef]

G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Active mode locking of a high pressure CW waveguide CO2 laser,” Appl. Phys. B 44, 107–110 (1987).
[CrossRef]

Mullot, G. M.

G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Pulses generation by an active multipass interferometer,” IEEE J. Quantum Electron. 24, 580–584 (1988).
[CrossRef]

G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Active mode locking of a high pressure CW waveguide CO2 laser,” Appl. Phys. B 44, 107–110 (1987).
[CrossRef]

Narang, R.

Newkirk, M. A.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Teraherz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Park, N.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Teraherz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Pinckey, J. T.

F. V. Kowalski, J. A. Squier, J. T. Pinckey, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711–713 (1987).
[CrossRef]

Schötzau, H. J.

R. Kesselring, A. W. Kälin, H. J. Schötzau, F. K. Kneubül, “Picosecond CO2 laser-pulse generation and amplification,” IEEE J. Quantum Electron. 29, 997–1005 (1993).
[CrossRef]

Soohoo, K. L.

L. C. Bradley, K. L. Soohoo, C. Freed, “Absolute frequencies of lasing transition in nine CO2 isotopic species,” IEEE J. Quantum Electron. 22, 234–267 (1986).
[CrossRef]

Squier, J. A.

F. V. Kowalski, J. A. Squier, J. T. Pinckey, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711–713 (1987).
[CrossRef]

Stenersen, K.

K. Stenersen, G. Wang, “New direct optical pump schemes for multiatmosphere CO2 and N2O lasers,” IEEE J. Quantum Electron. 25, 147–153 (1989).
[CrossRef]

K. Stenersen, G. Wang, “Direct optical pumping of high-pressure CO2 and N2O lasers with a pulsed HF pump laser,” IEEE J. Quantum Electron. 22, 2236–2242 (1986).
[CrossRef]

Tiemeijer, L. F.

L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier,” Appl. Phys. Lett. 59, 499–501 (1991).
[CrossRef]

Tochitsky, S. Y.

Vahala, K. J.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Teraherz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Villeneuve, D. M.

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 µm,” Appl. Phys. B 74, S153–S156 (2002).
[CrossRef]

J. P. Likforman, M. Mehendale, D. M. Villeneuve, M. Joffre, P. B. Corkum, “Conversion of high-power 15-fs visible pulses to the mid infrared,” Opt. Lett. 26, 99–101 (2001).
[CrossRef]

Vinet, J. Y.

G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Pulses generation by an active multipass interferometer,” IEEE J. Quantum Electron. 24, 580–584 (1988).
[CrossRef]

G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Active mode locking of a high pressure CW waveguide CO2 laser,” Appl. Phys. B 44, 107–110 (1987).
[CrossRef]

Walker, A. C.

A. J. Alcock, A. C. Walker, “Generation and detection of 150-psec mode-locked pulses from a multi atmosphere CO2 laser,” Appl. Phys. Lett. 25, 299–301 (1974).
[CrossRef]

Wang, G.

K. Stenersen, G. Wang, “New direct optical pump schemes for multiatmosphere CO2 and N2O lasers,” IEEE J. Quantum Electron. 25, 147–153 (1989).
[CrossRef]

K. Stenersen, G. Wang, “Direct optical pumping of high-pressure CO2 and N2O lasers with a pulsed HF pump laser,” IEEE J. Quantum Electron. 22, 2236–2242 (1986).
[CrossRef]

Williams, R.

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma wave,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Teraherz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 µm,” Appl. Phys. B 74, S153–S156 (2002).
[CrossRef]

G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Active mode locking of a high pressure CW waveguide CO2 laser,” Appl. Phys. B 44, 107–110 (1987).
[CrossRef]

Appl. Phys. Lett. (5)

A. J. Alcock, A. C. Walker, “Generation and detection of 150-psec mode-locked pulses from a multi atmosphere CO2 laser,” Appl. Phys. Lett. 25, 299–301 (1974).
[CrossRef]

A. Laubereau, L. Greiter, W. Kaiser, “Intense tunable picosecond pulses in the infrared,” Appl. Phys. Lett. 25, 87–89 (1974).
[CrossRef]

L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier,” Appl. Phys. Lett. 59, 499–501 (1991).
[CrossRef]

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Teraherz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

F. V. Kowalski, J. A. Squier, J. T. Pinckey, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711–713 (1987).
[CrossRef]

IEEE J. Quantum Electron. (6)

P. B. Corkum, “Amplification of picosecond 10 µm pulse in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron. 21, 216–232 (1985).
[CrossRef]

R. Kesselring, A. W. Kälin, H. J. Schötzau, F. K. Kneubül, “Picosecond CO2 laser-pulse generation and amplification,” IEEE J. Quantum Electron. 29, 997–1005 (1993).
[CrossRef]

G. L. Bourdet, R. A. Muller, G. M. Mullot, J. Y. Vinet, “Pulses generation by an active multipass interferometer,” IEEE J. Quantum Electron. 24, 580–584 (1988).
[CrossRef]

L. C. Bradley, K. L. Soohoo, C. Freed, “Absolute frequencies of lasing transition in nine CO2 isotopic species,” IEEE J. Quantum Electron. 22, 234–267 (1986).
[CrossRef]

K. Stenersen, G. Wang, “Direct optical pumping of high-pressure CO2 and N2O lasers with a pulsed HF pump laser,” IEEE J. Quantum Electron. 22, 2236–2242 (1986).
[CrossRef]

K. Stenersen, G. Wang, “New direct optical pump schemes for multiatmosphere CO2 and N2O lasers,” IEEE J. Quantum Electron. 25, 147–153 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (London) (1)

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1993).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma wave,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Scheme of the ring cavity cw laser light injected through an acousto-optic modulator.

Fig. 2
Fig. 2

Pulse shape obtained with an AOM efficiency of 0.55 and a transmission of the cavity and the AOM equal to 0.92 and 0.96, respectively.

Fig. 3
Fig. 3

Corresponding frequency spectrum.

Fig. 4
Fig. 4

Contrast, peak transmission normalized to its maximum value (here 4.5), averaged transmission (left scale), and finesse (right scale) versus the AOM efficiency. T c = 0.92, T = 0.96.

Fig. 5
Fig. 5

Theoretical pulse shapes normalized to their maximum versus time normalized to the round trip time in the cavity for various AOM efficiency. T c = 0.92, T = 0.96.

Fig. 6
Fig. 6

Identical to Fig. 1 except for the amplifier medium and the relevant notations.

Fig. 7
Fig. 7

FWHM of the pulses versus the injected mode order for R = 0.7 and three values of I inj/I sat.

Fig. 8
Fig. 8

Peak intensity normalized to the saturation intensity versus the injected mode order for R = 0.7 and three values of I inj/I sat.

Fig. 9
Fig. 9

Contrast of the pulses for R = 0.7 and three values of I inj/I sat.

Fig. 10
Fig. 10

Pulse shape for R = 0.7, N d = 0, and I inj = 10-5 I sat.

Fig. 11
Fig. 11

Pulse shape for R = 0.7, N d = -600, and I inj = 10-5 I sat. Curve A, without change of phase; curve B, with change of phase.

Fig. 12
Fig. 12

Peak intensity and contrast versus the amplifier length.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

dnn=11+nδ2g0dz1+p=Np1+pδ2,dΦn=-12nδ1+nδ2g0dz1+p=Np1+pδ2,
δ=ΔνΔνH, n=InIsat,
Φn=-knz-12 nδlnnz+Ct,
dnn=11+nδ2g0dz1+p=Np1+pδ2.
dnn=1+Nδ21+nδ2dNN.
γn=11+nδ2.
dnn=γnγNdNN,
n=BnNNηn, ηn=γnγN,
lnGN+γNn=N BnNN0ηnGNηn-1=γNg0L,
nL=Gnn0,NL=GNN0,Gn=GNηn.
n0=Tcn0,nL=TcnL,
n0=RTn-1L.
BnNN0ηn=Bn-1NTcTRGNN0ηn-1.
n=p=Nn ηp.
BnN=TcTRn-NGNn-1N01-ηn.
lnGN+γNN0n=NTcTRn-NGNnGNηn-1=γNg0L.
N0=T1-Rinj=N0Tc.
inj=γNg0L-lnGNTcT1-RγNn=NTcTRn-NGNn-1GNηn-1.
N-1,out=TRinj,N,out=TcT21-R2GNinj,n,out=TcT21-R2TcTRn-NGNninj.
ΔΦn=-2π ν0Δνs-nΔν2π 1Δνs+ηn2ΔνH lnGN.
outinj=TR exp-2πiN-1Δνt+TcT1-Rn=NTcTRn-NGNn1/2×exp-i2πnΔνt-Φncc,
Φn=p=Nn ΔΦp,

Metrics