Abstract

We have developed an approach for relatively rapid and easy fabrication of large-area two-dimensional (2-D) photonic crystal structures with controlled defects in the lattice. The technique is based on the combination of two lithographic steps in UV-sensitive SU-8 photoresist. First, multiple exposures of interference fringes are used in combination with precise rotation of the sample to define a 2-D lattice of holes. Second, a strongly focused UV laser beam is used to define line-defect waveguides by localized exposure in the recorded but not yet developed lattice from the first step. After development, the mask is transferred into a GaAs substrate with dry etching in chemically assisted ion-beam etching.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
    [CrossRef]
  2. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature (London) 414, 289–293 (2001).
    [CrossRef]
  3. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature (London) 404, 53–56 (2000).
    [CrossRef]
  4. T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
    [CrossRef]
  5. S. Shoji, S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
    [CrossRef]
  6. V. Berger, O. Gauthie-lafaye, E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
    [CrossRef]
  7. P. Visconti, C. Turco, R. Rinaldi, R. Cingolani, “Nanopatterning of organic and inorganic materials by holographic lithography and plasma etching,” Microelectron. Eng. 53, 391–394 (2000).
    [CrossRef]
  8. W. Lee, S. A. Pruzinsky, P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater. 14, 271–274 (2002).
    [CrossRef]
  9. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  10. M. Loncar, D. Nedeljkovic’, T. Doll, J. Vuckovic’, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
    [CrossRef]
  11. L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching,” Opt. Eng. (to be published).
  12. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
    [CrossRef]

2002 (1)

W. Lee, S. A. Pruzinsky, P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater. 14, 271–274 (2002).
[CrossRef]

2001 (2)

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature (London) 414, 289–293 (2001).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[CrossRef]

2000 (5)

S. Shoji, S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature (London) 404, 53–56 (2000).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

P. Visconti, C. Turco, R. Rinaldi, R. Cingolani, “Nanopatterning of organic and inorganic materials by holographic lithography and plasma etching,” Microelectron. Eng. 53, 391–394 (2000).
[CrossRef]

M. Loncar, D. Nedeljkovic’, T. Doll, J. Vuckovic’, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

1997 (1)

V. Berger, O. Gauthie-lafaye, E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

1995 (1)

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Berger, V.

V. Berger, O. Gauthie-lafaye, E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

Bo, X.-Z.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature (London) 414, 289–293 (2001).
[CrossRef]

Braun, P. V.

W. Lee, S. A. Pruzinsky, P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater. 14, 271–274 (2002).
[CrossRef]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature (London) 404, 53–56 (2000).
[CrossRef]

Chang, T. H.-P.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

Cingolani, R.

P. Visconti, C. Turco, R. Rinaldi, R. Cingolani, “Nanopatterning of organic and inorganic materials by holographic lithography and plasma etching,” Microelectron. Eng. 53, 391–394 (2000).
[CrossRef]

Costard, E.

V. Berger, O. Gauthie-lafaye, E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature (London) 404, 53–56 (2000).
[CrossRef]

Doll, T.

M. Loncar, D. Nedeljkovic’, T. Doll, J. Vuckovic’, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Fainman, Y.

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching,” Opt. Eng. (to be published).

Gauthie-lafaye, O.

V. Berger, O. Gauthie-lafaye, E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Gelorme, J. D.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature (London) 404, 53–56 (2000).
[CrossRef]

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

John, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

Juodkazis, S.

T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[CrossRef]

Kawata, S.

S. Shoji, S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[CrossRef]

LaBianca, N.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Lee, K. Y.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, W.

W. Lee, S. A. Pruzinsky, P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater. 14, 271–274 (2002).
[CrossRef]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

Loncar, M.

M. Loncar, D. Nedeljkovic’, T. Doll, J. Vuckovic’, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[CrossRef]

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

Misawa, H.

T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[CrossRef]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

Nakagawa, W.

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching,” Opt. Eng. (to be published).

Nedeljkovic’, D.

M. Loncar, D. Nedeljkovic’, T. Doll, J. Vuckovic’, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Norris, D. J.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature (London) 414, 289–293 (2001).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Ozin, G. A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Pang, L.

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching,” Opt. Eng. (to be published).

Pearsall, T. P.

M. Loncar, D. Nedeljkovic’, T. Doll, J. Vuckovic’, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Pruzinsky, S. A.

W. Lee, S. A. Pruzinsky, P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater. 14, 271–274 (2002).
[CrossRef]

Rinaldi, R.

P. Visconti, C. Turco, R. Rinaldi, R. Cingolani, “Nanopatterning of organic and inorganic materials by holographic lithography and plasma etching,” Microelectron. Eng. 53, 391–394 (2000).
[CrossRef]

Rishton, S. A.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Scherer, A.

M. Loncar, D. Nedeljkovic’, T. Doll, J. Vuckovic’, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature (London) 404, 53–56 (2000).
[CrossRef]

Shaw, J.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Shoji, S.

S. Shoji, S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

Sturm, J. C.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature (London) 414, 289–293 (2001).
[CrossRef]

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature (London) 404, 53–56 (2000).
[CrossRef]

Turco, C.

P. Visconti, C. Turco, R. Rinaldi, R. Cingolani, “Nanopatterning of organic and inorganic materials by holographic lithography and plasma etching,” Microelectron. Eng. 53, 391–394 (2000).
[CrossRef]

van Driel, H. M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

Visconti, P.

P. Visconti, C. Turco, R. Rinaldi, R. Cingolani, “Nanopatterning of organic and inorganic materials by holographic lithography and plasma etching,” Microelectron. Eng. 53, 391–394 (2000).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature (London) 414, 289–293 (2001).
[CrossRef]

Vuckovic’, J.

M. Loncar, D. Nedeljkovic’, T. Doll, J. Vuckovic’, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Zolgharnain, S.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Adv. Mater. (1)

W. Lee, S. A. Pruzinsky, P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater. 14, 271–274 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[CrossRef]

S. Shoji, S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

M. Loncar, D. Nedeljkovic’, T. Doll, J. Vuckovic’, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

J. Appl. Phys. (1)

V. Berger, O. Gauthie-lafaye, E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Microelectron. Eng. (1)

P. Visconti, C. Turco, R. Rinaldi, R. Cingolani, “Nanopatterning of organic and inorganic materials by holographic lithography and plasma etching,” Microelectron. Eng. 53, 391–394 (2000).
[CrossRef]

Nature (London) (3)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometers,” Nature (London) 405, 437–439 (2000).
[CrossRef]

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature (London) 414, 289–293 (2001).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature (London) 404, 53–56 (2000).
[CrossRef]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Other (1)

L. Pang, W. Nakagawa, Y. Fainman, “Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam etching,” Opt. Eng. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the two-beam interferometic lithography for fabrication of a 2-D photonic crystal. The laser beam is expanded by L1 (a UV objective lenses with focal length of 11.5 mm), collimated by UV lens L2 with a focal length of 100.0 mm, and is split into two equal intensity beams after beam splitter BS1 and then is recombined on the resist that is coated on the substrate. Beam splitter BS2 is used to obtain a scanning beam exposing the resist by a reflective MO lens L3, 36× (numerical aperture of 0.52) with a focal length of 10.4 mm (from Thermo Oriel).

Fig. 2
Fig. 2

Experimental results of the fabrication of a rectangular mesh photonic crystal lattice produced by double exposure of SU-8 by use of an interference pattern oriented in two orthogonal directions. The SEM photographs of the obtained square lattice with a period of 1.5 µm show that the diameter of the fabricated holes can be controlled by the exposure density producing (a) small holes with a diameter of 0.9 µm obtained with an exposure of approximately 30 mJ/cm2 for a 1-min bake time in PEB and (b) large holes with a diameter of 1.3 µm with an exposure of 15 mJ/cm2 for 2 min in PEB.

Fig. 3
Fig. 3

Experimental results of the fabrication of a hexagonal photonic crystal lattice produced by triple exposure of SU-8 by use of an interference pattern rotated by 60° between each exposure. The SEM photographs of the obtained hexagonal lattice with a period of 1.5 µm show that (a) small holes with a diameter of 0.7 µm are obtained with exposure of approximately 28 mJ/cm2 for a 1-min bake time in PEB and (b) large holes with a diameter of 1.1 µm are obtained with an exposure of approximately 10 mJ/cm2 for 2 min in PEB.

Fig. 4
Fig. 4

SEM photographs of a hexagonal lattice structure in SU-8 to show the beat period that is due to the misalignment of the substrate rotations: (a) result from use of a manually controlled rotation stage; (b) magnified transition areas in (a); (c) result obtained with a high-precision Physik Instrumente rotating stage with perfect hole areas approximately 2 mm wide.

Fig. 5
Fig. 5

SEM micrograph of 2-D photonic crystals with period of 1.5 µm transferred into a GaAs substrate by CAIBE: (a) orthogonal lattice with a 3-µm depth in a GaAs substrate; (b) a hexagonal periodic structure with a 3-µm depth.

Fig. 6
Fig. 6

Dependence of width of the scanned line in SU-8 on incident intensity by a 36× reflective MO with the square of the linewidth as a function of the intensity on logarithmic scale.

Fig. 7
Fig. 7

SEM photographs of (a) a line defect introduced into a rectangular mesh photonic crystal lattice in SU-8; (b) a magnified view of (a) demonstrating the possibility of large-area fabrication with good quality; (c) a line defect introduced into a hexagonal lattice structure with three lines of holes canceled; (d) a magnified view of (c); (e) a line defect transferred into the GaAs substrate with two lines of the hole canceled; (f) a magnified view of (e).

Metrics