Abstract

A novel type of fiber-optic cavity sensor for hydrogen diffusion into and out of fibers is presented. The sensor is an implementation of a cavity ringdown scheme in a silica-based single-mode fiber that has been exposed to gaseous hydrogen at normal pressure. The measured ringdown times during the H2 diffusion show good agreement with a theoretical diffusion model. This model allows the determination of the diffusion coefficient of hydrogen in silica, resulting in D = (3.02 ± 0.07) × 10-15 m2/s at 30 °C.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
    [CrossRef] [PubMed]
  2. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [CrossRef]
  3. G. A. Marcus, H. A. Schwettman, “Cavity ringdown spectroscopy of thin films in the mid-infrared,” Appl. Opt. 41, 5167–5171 (2002).
    [CrossRef] [PubMed]
  4. E. Hamers, D. Schram, R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237–243 (2002).
    [CrossRef]
  5. R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
    [CrossRef]
  6. B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
    [CrossRef]
  7. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  8. T. von Lerber, A. Romann, “A method for measuring at least one physical parameter using an optical resonator,” European patent application 00121314.9 (9October2000).
  9. T. Tanifuji, M. Matsumoto, M. Tokuda, M. Miyauchi, “Wavelength dependent optical loss increase in graded-index optical fiber transmission lines,” Electron. Lett. 20, 13–14 (1984).
    [CrossRef]
  10. Y. Ohmori, H. Itoh, M. Nakahara, N. Inagaki, “Loss increase in silicone-coated fibres with heat treatment,” Electron. Lett. 19, 1006–1009 (1983).
    [CrossRef]
  11. SMF-28 Optical Fiber, Product Information (Corning, One Riverfront Plaza, Corning, N.Y., 2001).
  12. T. von Lerber, M. W. Sigrist, “Cavity-ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing,” Appl. Opt. 41, 3567–3575 (2002).
    [CrossRef] [PubMed]
  13. N. Uchida, N. Uesugi, “Infrared optical loss increase in silica fibers due to hydrogen,” J. Lightwave Technol. LT-4, 1133–1138 (1986).
  14. K. J. Beales, D. M. Cooper, J. D. Rush, “Increased attenuation in optical fibres caused by diffusion of molecular hydrogen at room temperature,” Electron. Lett. 19, 917–919 (1983).
    [CrossRef]
  15. J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1975).
  16. J. F. Shackelford, P. L. Studt, R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43, 1619–1626 (1972).
    [CrossRef]
  17. J. L. Mrotek, M. J. Matthewson, C. R. Kurkjian, “Diffusion of moisture through optical fiber coatings,” J. Lightwave Technol. 19, 988–993 (2001).
    [CrossRef]
  18. P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng. 30, 780–789 (1991).
    [CrossRef]
  19. J. E. Shelby, “Molecular diffusion and solubility of hydrogen isotopes in vitreous silica,” J. Appl. Phys. 48, 3387–3394 (1977).
    [CrossRef]
  20. D. Marcuse, Principles of Optical Fiber Measurements (Academic, New York, 1981).

2002 (4)

G. A. Marcus, H. A. Schwettman, “Cavity ringdown spectroscopy of thin films in the mid-infrared,” Appl. Opt. 41, 5167–5171 (2002).
[CrossRef] [PubMed]

E. Hamers, D. Schram, R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237–243 (2002).
[CrossRef]

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

T. von Lerber, M. W. Sigrist, “Cavity-ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing,” Appl. Opt. 41, 3567–3575 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

1997 (1)

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

1991 (1)

P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng. 30, 780–789 (1991).
[CrossRef]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1986 (1)

N. Uchida, N. Uesugi, “Infrared optical loss increase in silica fibers due to hydrogen,” J. Lightwave Technol. LT-4, 1133–1138 (1986).

1984 (1)

T. Tanifuji, M. Matsumoto, M. Tokuda, M. Miyauchi, “Wavelength dependent optical loss increase in graded-index optical fiber transmission lines,” Electron. Lett. 20, 13–14 (1984).
[CrossRef]

1983 (2)

Y. Ohmori, H. Itoh, M. Nakahara, N. Inagaki, “Loss increase in silicone-coated fibres with heat treatment,” Electron. Lett. 19, 1006–1009 (1983).
[CrossRef]

K. J. Beales, D. M. Cooper, J. D. Rush, “Increased attenuation in optical fibres caused by diffusion of molecular hydrogen at room temperature,” Electron. Lett. 19, 917–919 (1983).
[CrossRef]

1977 (1)

J. E. Shelby, “Molecular diffusion and solubility of hydrogen isotopes in vitreous silica,” J. Appl. Phys. 48, 3387–3394 (1977).
[CrossRef]

1972 (1)

J. F. Shackelford, P. L. Studt, R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43, 1619–1626 (1972).
[CrossRef]

Baillargeon, J. N.

Beales, K. J.

K. J. Beales, D. M. Cooper, J. D. Rush, “Increased attenuation in optical fibres caused by diffusion of molecular hydrogen at room temperature,” Electron. Lett. 19, 917–919 (1983).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Brown, R. S.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

Capasso, F.

Cho, A. Y.

Cooper, D. M.

K. J. Beales, D. M. Cooper, J. D. Rush, “Increased attenuation in optical fibres caused by diffusion of molecular hydrogen at room temperature,” Electron. Lett. 19, 917–919 (1983).
[CrossRef]

Crank, J.

J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1975).

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Engeln, R.

E. Hamers, D. Schram, R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237–243 (2002).
[CrossRef]

Fulrath, R. M.

J. F. Shackelford, P. L. Studt, R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43, 1619–1626 (1972).
[CrossRef]

Gmachl, C.

Hamers, E.

E. Hamers, D. Schram, R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237–243 (2002).
[CrossRef]

Harb, C. C.

Hutchinson, A. L.

Inagaki, N.

Y. Ohmori, H. Itoh, M. Nakahara, N. Inagaki, “Loss increase in silicone-coated fibres with heat treatment,” Electron. Lett. 19, 1006–1009 (1983).
[CrossRef]

Itoh, H.

Y. Ohmori, H. Itoh, M. Nakahara, N. Inagaki, “Loss increase in silicone-coated fibres with heat treatment,” Electron. Lett. 19, 1006–1009 (1983).
[CrossRef]

Kozin, I.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

Kurkjian, C. R.

Lemaire, P. J.

P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng. 30, 780–789 (1991).
[CrossRef]

Loock, H.-P.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

Marcus, G. A.

Marcuse, D.

D. Marcuse, Principles of Optical Fiber Measurements (Academic, New York, 1981).

Matsumoto, M.

T. Tanifuji, M. Matsumoto, M. Tokuda, M. Miyauchi, “Wavelength dependent optical loss increase in graded-index optical fiber transmission lines,” Electron. Lett. 20, 13–14 (1984).
[CrossRef]

Matthewson, M. J.

Meijer, G.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Miyauchi, M.

T. Tanifuji, M. Matsumoto, M. Tokuda, M. Miyauchi, “Wavelength dependent optical loss increase in graded-index optical fiber transmission lines,” Electron. Lett. 20, 13–14 (1984).
[CrossRef]

Mrotek, J. L.

Nakahara, M.

Y. Ohmori, H. Itoh, M. Nakahara, N. Inagaki, “Loss increase in silicone-coated fibres with heat treatment,” Electron. Lett. 19, 1006–1009 (1983).
[CrossRef]

O’Keefe, A.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Ohmori, Y.

Y. Ohmori, H. Itoh, M. Nakahara, N. Inagaki, “Loss increase in silicone-coated fibres with heat treatment,” Electron. Lett. 19, 1006–1009 (1983).
[CrossRef]

Oleschuk, R. D.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

Paldus, B. A.

Paul, J. B.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Peeters, R.

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Romann, A.

T. von Lerber, A. Romann, “A method for measuring at least one physical parameter using an optical resonator,” European patent application 00121314.9 (9October2000).

Rush, J. D.

K. J. Beales, D. M. Cooper, J. D. Rush, “Increased attenuation in optical fibres caused by diffusion of molecular hydrogen at room temperature,” Electron. Lett. 19, 917–919 (1983).
[CrossRef]

Saykally, R. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Scherer, J. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Schram, D.

E. Hamers, D. Schram, R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237–243 (2002).
[CrossRef]

Schwettman, H. A.

Shackelford, J. F.

J. F. Shackelford, P. L. Studt, R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43, 1619–1626 (1972).
[CrossRef]

Shelby, J. E.

J. E. Shelby, “Molecular diffusion and solubility of hydrogen isotopes in vitreous silica,” J. Appl. Phys. 48, 3387–3394 (1977).
[CrossRef]

Sigrist, M. W.

Sivco, D. L.

Spence, T. G.

Studt, P. L.

J. F. Shackelford, P. L. Studt, R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43, 1619–1626 (1972).
[CrossRef]

Tanifuji, T.

T. Tanifuji, M. Matsumoto, M. Tokuda, M. Miyauchi, “Wavelength dependent optical loss increase in graded-index optical fiber transmission lines,” Electron. Lett. 20, 13–14 (1984).
[CrossRef]

Tokuda, M.

T. Tanifuji, M. Matsumoto, M. Tokuda, M. Miyauchi, “Wavelength dependent optical loss increase in graded-index optical fiber transmission lines,” Electron. Lett. 20, 13–14 (1984).
[CrossRef]

Tong, Z.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

Uchida, N.

N. Uchida, N. Uesugi, “Infrared optical loss increase in silica fibers due to hydrogen,” J. Lightwave Technol. LT-4, 1133–1138 (1986).

Uesugi, N.

N. Uchida, N. Uesugi, “Infrared optical loss increase in silica fibers due to hydrogen,” J. Lightwave Technol. LT-4, 1133–1138 (1986).

von Lerber, T.

T. von Lerber, M. W. Sigrist, “Cavity-ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing,” Appl. Opt. 41, 3567–3575 (2002).
[CrossRef] [PubMed]

T. von Lerber, A. Romann, “A method for measuring at least one physical parameter using an optical resonator,” European patent application 00121314.9 (9October2000).

Zare, R. N.

Appl. Opt. (2)

Chem. Phys. Lett. (1)

E. Hamers, D. Schram, R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237–243 (2002).
[CrossRef]

Chem. Rev. (1)

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Electron. Lett. (3)

T. Tanifuji, M. Matsumoto, M. Tokuda, M. Miyauchi, “Wavelength dependent optical loss increase in graded-index optical fiber transmission lines,” Electron. Lett. 20, 13–14 (1984).
[CrossRef]

Y. Ohmori, H. Itoh, M. Nakahara, N. Inagaki, “Loss increase in silicone-coated fibres with heat treatment,” Electron. Lett. 19, 1006–1009 (1983).
[CrossRef]

K. J. Beales, D. M. Cooper, J. D. Rush, “Increased attenuation in optical fibres caused by diffusion of molecular hydrogen at room temperature,” Electron. Lett. 19, 917–919 (1983).
[CrossRef]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

J. Appl. Phys. (2)

J. F. Shackelford, P. L. Studt, R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43, 1619–1626 (1972).
[CrossRef]

J. E. Shelby, “Molecular diffusion and solubility of hydrogen isotopes in vitreous silica,” J. Appl. Phys. 48, 3387–3394 (1977).
[CrossRef]

J. Chem. Phys. (1)

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

J. Lightwave Technol. (2)

J. L. Mrotek, M. J. Matthewson, C. R. Kurkjian, “Diffusion of moisture through optical fiber coatings,” J. Lightwave Technol. 19, 988–993 (2001).
[CrossRef]

N. Uchida, N. Uesugi, “Infrared optical loss increase in silica fibers due to hydrogen,” J. Lightwave Technol. LT-4, 1133–1138 (1986).

Opt. Eng. (1)

P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng. 30, 780–789 (1991).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Other (4)

T. von Lerber, A. Romann, “A method for measuring at least one physical parameter using an optical resonator,” European patent application 00121314.9 (9October2000).

SMF-28 Optical Fiber, Product Information (Corning, One Riverfront Plaza, Corning, N.Y., 2001).

D. Marcuse, Principles of Optical Fiber Measurements (Academic, New York, 1981).

J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic cross-section of a single-mode fiber: Core (Ge-doped silica), Cladding (silica), Polymer (acrylate).

Fig. 2
Fig. 2

Schematic diagram of the measurement setup. ECDL, external-cavity diode laser; AOM, acousto-optic modulator; PC, polarization controller.

Fig. 3
Fig. 3

Spectra of ringdown times in fiber cavity before and after H2 out-diffusion at 30 °C. ●, ringdown time of H2-contaminated fiber; □, ringdown time of fiber after the H2 out-diffusion.

Fig. 4
Fig. 4

Enhanced loss inside the fiber cavity caused by absorption of hydrogen diffused into the fiber.

Fig. 5
Fig. 5

Ringdown times during H2-diffusion out of the fiber cavity at 1590 nm. □, measured ringdown times; —, calculated ringdown times derived from H2-diffusion modeling.

Fig. 6
Fig. 6

□, measured normalized additional loss during H2-diffusion out of the fiber cavity at 1590 nm; —, exponential fit from which the diffusion coefficient D of H2 in silica is determined as (3.02 ± 0.07) × 10-15 m2/s.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

τ=tr2|lnTR|=Lneffco|lnTR|,
αdB/km=10Lkmlog101T.
Ct=DΔC,
C=0 for r=b and t0,
C=Cs for r<b and t=0,
Cr, t=2Csn=1Jojnrbexp-jn2Dtb2jnJ1jn,
Cr=0, tCs=αt-αoαs-αo=ΔαtΔαs=2 n=1exp-jn2Dtb2jnJ1jn,
ΔαtΔαs2 exp-j12Dtb2j1J1j1.

Metrics