Abstract

We describe the design, fabrication, and performance of a high-speed, continuously tunable, and reset-free polarization controller based on nematic liquid-crystal (NLC) microcell wave plates fabricated directly between the tips of optical fibers. This controller utilizes a pulsed driving scheme and optimized NLC materials to achieve a stepwise switching speed of 1 deg/µs, for arbitrary rotation angles with moderately low voltages. This compact microcell design requires no bulk optical components and has the potential to have low insertion loss. We describe the performance of these devices when implemented in polarization mode dispersion compensators for 40 Gbit/s systems. The good optical properties and the nonmechanical, high-speed, and low-power operation suggest that this type of device might be considered for some applications in dynamic compensation of polarization mode dispersion, polarization analysis, polarization division demultiplexing, and polarization scrambling in high-speed optical communication systems.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole, J. Nagel, “Polarization effects in lightwave systems,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow, T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 114–162.
    [CrossRef]
  2. K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, “10.92-tb/s (273 × 40 Gb/s) triple-band/ultra dense WDM optical-repeated transmission experiment,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD24–1.
  3. H. Shimizu, S. Yamazaki, T. Ono, K. Imura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1224 (1991).
    [CrossRef]
  4. F. Heismann, M. S. Whalen, “Fast automatic polarization control system,” IEEE Photon. Technol. Lett. 4, 503–505 (1992).
    [CrossRef]
  5. K. Hirabayashi, C. Amano, “Liquid-crystal polarization controller arrays on planar waveguide circuits,” IEEE Photon. Technol. Lett. 14, 504–506 (2002).
    [CrossRef]
  6. T. Chiba, Y. Ohtera, S. Kawakami, “Polarization stabilizer using liquid crystal rotatable waveplates,” J. Lightwave Technol. 17, 885–890 (1999).
    [CrossRef]
  7. L. Dupont, J. L. de Bougrenet de la Tocnaye, M. Le Gall, D. Pennickx, “Principle of a compact polarization mode dispersion controller using homeotropic electronic liquid crystal confined single mode fiber devices,” Opt. Commun. 176, 113–119 (2000).
    [CrossRef]
  8. B. R. Acharya, C. K. Madsen, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, L. Möller, C. C. Huang, R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Opt. Lett. 28, 1096–1098 (2003).
    [CrossRef] [PubMed]
  9. B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, R. Pindak, “High speed liquid crystal optical modulator based on in-plane switching,” Appl. Phys. Lett. 81, 5243–5246 (2002).
    [CrossRef]
  10. R. M. A. Azzam, “Poincaré sphere representation of the fixed-polarizer rotating-retarder optical system,” J. Opt. Soc. Am. A 17, 2105–2107 (2000).
    [CrossRef]
  11. P. Yeh, C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999), pp. 38–39.
  12. See, for example, Ref. 1, p. 150.

2003 (1)

2002 (2)

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, R. Pindak, “High speed liquid crystal optical modulator based on in-plane switching,” Appl. Phys. Lett. 81, 5243–5246 (2002).
[CrossRef]

K. Hirabayashi, C. Amano, “Liquid-crystal polarization controller arrays on planar waveguide circuits,” IEEE Photon. Technol. Lett. 14, 504–506 (2002).
[CrossRef]

2000 (2)

L. Dupont, J. L. de Bougrenet de la Tocnaye, M. Le Gall, D. Pennickx, “Principle of a compact polarization mode dispersion controller using homeotropic electronic liquid crystal confined single mode fiber devices,” Opt. Commun. 176, 113–119 (2000).
[CrossRef]

R. M. A. Azzam, “Poincaré sphere representation of the fixed-polarizer rotating-retarder optical system,” J. Opt. Soc. Am. A 17, 2105–2107 (2000).
[CrossRef]

1999 (1)

1992 (1)

F. Heismann, M. S. Whalen, “Fast automatic polarization control system,” IEEE Photon. Technol. Lett. 4, 503–505 (1992).
[CrossRef]

1991 (1)

H. Shimizu, S. Yamazaki, T. Ono, K. Imura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1224 (1991).
[CrossRef]

Acharya, B. R.

B. R. Acharya, C. K. Madsen, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, L. Möller, C. C. Huang, R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Opt. Lett. 28, 1096–1098 (2003).
[CrossRef] [PubMed]

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, R. Pindak, “High speed liquid crystal optical modulator based on in-plane switching,” Appl. Phys. Lett. 81, 5243–5246 (2002).
[CrossRef]

Amano, C.

K. Hirabayashi, C. Amano, “Liquid-crystal polarization controller arrays on planar waveguide circuits,” IEEE Photon. Technol. Lett. 14, 504–506 (2002).
[CrossRef]

Azzam, R. M. A.

Baldwin, K. W.

B. R. Acharya, C. K. Madsen, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, L. Möller, C. C. Huang, R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Opt. Lett. 28, 1096–1098 (2003).
[CrossRef] [PubMed]

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, R. Pindak, “High speed liquid crystal optical modulator based on in-plane switching,” Appl. Phys. Lett. 81, 5243–5246 (2002).
[CrossRef]

Chiba, T.

de Bougrenet de la Tocnaye, J. L.

L. Dupont, J. L. de Bougrenet de la Tocnaye, M. Le Gall, D. Pennickx, “Principle of a compact polarization mode dispersion controller using homeotropic electronic liquid crystal confined single mode fiber devices,” Opt. Commun. 176, 113–119 (2000).
[CrossRef]

Dupont, L.

L. Dupont, J. L. de Bougrenet de la Tocnaye, M. Le Gall, D. Pennickx, “Principle of a compact polarization mode dispersion controller using homeotropic electronic liquid crystal confined single mode fiber devices,” Opt. Commun. 176, 113–119 (2000).
[CrossRef]

Fukuchi, K.

K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, “10.92-tb/s (273 × 40 Gb/s) triple-band/ultra dense WDM optical-repeated transmission experiment,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD24–1.

Gu, C.

P. Yeh, C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999), pp. 38–39.

Heismann, F.

F. Heismann, M. S. Whalen, “Fast automatic polarization control system,” IEEE Photon. Technol. Lett. 4, 503–505 (1992).
[CrossRef]

Hirabayashi, K.

K. Hirabayashi, C. Amano, “Liquid-crystal polarization controller arrays on planar waveguide circuits,” IEEE Photon. Technol. Lett. 14, 504–506 (2002).
[CrossRef]

Huang, C. C.

B. R. Acharya, C. K. Madsen, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, L. Möller, C. C. Huang, R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Opt. Lett. 28, 1096–1098 (2003).
[CrossRef] [PubMed]

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, R. Pindak, “High speed liquid crystal optical modulator based on in-plane switching,” Appl. Phys. Lett. 81, 5243–5246 (2002).
[CrossRef]

Imura, K.

H. Shimizu, S. Yamazaki, T. Ono, K. Imura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1224 (1991).
[CrossRef]

Ito, T.

K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, “10.92-tb/s (273 × 40 Gb/s) triple-band/ultra dense WDM optical-repeated transmission experiment,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD24–1.

Kasamatsu, T.

K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, “10.92-tb/s (273 × 40 Gb/s) triple-band/ultra dense WDM optical-repeated transmission experiment,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD24–1.

Kawakami, S.

Le Gall, M.

L. Dupont, J. L. de Bougrenet de la Tocnaye, M. Le Gall, D. Pennickx, “Principle of a compact polarization mode dispersion controller using homeotropic electronic liquid crystal confined single mode fiber devices,” Opt. Commun. 176, 113–119 (2000).
[CrossRef]

MacHarrie, R. A.

B. R. Acharya, C. K. Madsen, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, L. Möller, C. C. Huang, R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Opt. Lett. 28, 1096–1098 (2003).
[CrossRef] [PubMed]

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, R. Pindak, “High speed liquid crystal optical modulator based on in-plane switching,” Appl. Phys. Lett. 81, 5243–5246 (2002).
[CrossRef]

Madsen, C. K.

Möller, L.

Morie, M.

K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, “10.92-tb/s (273 × 40 Gb/s) triple-band/ultra dense WDM optical-repeated transmission experiment,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD24–1.

Nagel, J.

C. D. Poole, J. Nagel, “Polarization effects in lightwave systems,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow, T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 114–162.
[CrossRef]

Ogasahara, D.

K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, “10.92-tb/s (273 × 40 Gb/s) triple-band/ultra dense WDM optical-repeated transmission experiment,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD24–1.

Ohhira, R.

K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, “10.92-tb/s (273 × 40 Gb/s) triple-band/ultra dense WDM optical-repeated transmission experiment,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD24–1.

Ohtera, Y.

Ono, T.

H. Shimizu, S. Yamazaki, T. Ono, K. Imura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1224 (1991).
[CrossRef]

K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, “10.92-tb/s (273 × 40 Gb/s) triple-band/ultra dense WDM optical-repeated transmission experiment,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD24–1.

Pennickx, D.

L. Dupont, J. L. de Bougrenet de la Tocnaye, M. Le Gall, D. Pennickx, “Principle of a compact polarization mode dispersion controller using homeotropic electronic liquid crystal confined single mode fiber devices,” Opt. Commun. 176, 113–119 (2000).
[CrossRef]

Pindak, R.

B. R. Acharya, C. K. Madsen, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, L. Möller, C. C. Huang, R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Opt. Lett. 28, 1096–1098 (2003).
[CrossRef] [PubMed]

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, R. Pindak, “High speed liquid crystal optical modulator based on in-plane switching,” Appl. Phys. Lett. 81, 5243–5246 (2002).
[CrossRef]

Poole, C. D.

C. D. Poole, J. Nagel, “Polarization effects in lightwave systems,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow, T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 114–162.
[CrossRef]

Rogers, J. A.

B. R. Acharya, C. K. Madsen, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, L. Möller, C. C. Huang, R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Opt. Lett. 28, 1096–1098 (2003).
[CrossRef] [PubMed]

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, R. Pindak, “High speed liquid crystal optical modulator based on in-plane switching,” Appl. Phys. Lett. 81, 5243–5246 (2002).
[CrossRef]

Sekiya, K.

K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, “10.92-tb/s (273 × 40 Gb/s) triple-band/ultra dense WDM optical-repeated transmission experiment,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD24–1.

Shimizu, H.

H. Shimizu, S. Yamazaki, T. Ono, K. Imura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1224 (1991).
[CrossRef]

Whalen, M. S.

F. Heismann, M. S. Whalen, “Fast automatic polarization control system,” IEEE Photon. Technol. Lett. 4, 503–505 (1992).
[CrossRef]

Yamazaki, S.

H. Shimizu, S. Yamazaki, T. Ono, K. Imura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1224 (1991).
[CrossRef]

Yeh, P.

P. Yeh, C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999), pp. 38–39.

Appl. Phys. Lett. (1)

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, R. Pindak, “High speed liquid crystal optical modulator based on in-plane switching,” Appl. Phys. Lett. 81, 5243–5246 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

F. Heismann, M. S. Whalen, “Fast automatic polarization control system,” IEEE Photon. Technol. Lett. 4, 503–505 (1992).
[CrossRef]

K. Hirabayashi, C. Amano, “Liquid-crystal polarization controller arrays on planar waveguide circuits,” IEEE Photon. Technol. Lett. 14, 504–506 (2002).
[CrossRef]

J. Lightwave Technol. (2)

H. Shimizu, S. Yamazaki, T. Ono, K. Imura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1224 (1991).
[CrossRef]

T. Chiba, Y. Ohtera, S. Kawakami, “Polarization stabilizer using liquid crystal rotatable waveplates,” J. Lightwave Technol. 17, 885–890 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

L. Dupont, J. L. de Bougrenet de la Tocnaye, M. Le Gall, D. Pennickx, “Principle of a compact polarization mode dispersion controller using homeotropic electronic liquid crystal confined single mode fiber devices,” Opt. Commun. 176, 113–119 (2000).
[CrossRef]

Opt. Lett. (1)

Other (4)

C. D. Poole, J. Nagel, “Polarization effects in lightwave systems,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow, T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 114–162.
[CrossRef]

K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, “10.92-tb/s (273 × 40 Gb/s) triple-band/ultra dense WDM optical-repeated transmission experiment,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD24–1.

P. Yeh, C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999), pp. 38–39.

See, for example, Ref. 1, p. 150.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of the fiber ferrule based microcell wave plate. (b) Top view of the wave plate.

Fig. 2
Fig. 2

(a) Electrode structure at the tip of the ferrule. The circle represents the perimeter of the 125-µm-diameter single-mode fiber and the dot at the center represents its core. The square at the center depicts the base of the 5-µm-thick box used in the calculation of the in-plane component of electric field E in the midplane between two substrates for ϕ = 0°. (b) The magnitude of the in-plane component of the electric field. (c) The cosine square of the angular deviation of the field. The dotted lines represent the location of the electrodes on the substrate plane. The anisotropy of the dielectric constant of the LC was neglected in these calculations.

Fig. 3
Fig. 3

(a) Potentials (i) and (ii) applied to x and y electrodes, respectively. At time t = 0, the potentials were switched from the values required to orient the director at ϕ = 0 to ϕ = 5°. (iii) Change in optical intensity ΔI at the photodetector when the director rotates through 5° with (solid curve) and without (dashed curve) a triggering pulse. The vertical dotted lines represent the time during which a stronger pulse directed along 60° was applied. (b) Switching characteristics for a fiber ferrule based NLC QWP for various angular orientations with (solid curves) and without (dashed curves) the triggering pulse oriented at 60°. The vertical dashed lines show the corresponding switching times. (c) Evolution of the SOP of linearly polarized light when the optic axis of the QWP is rotated by 180°. The filled (open) circles represent the front (back) of the Poincaré sphere. The slight asymmetry and the tilt in the figure-8 contour are due to the fiber segments between the source and the LC layer and the LC layer and the detector.

Fig. 4
Fig. 4

(a) Insertion loss and the polarization-dependent loss of the NLC PolCon in the C and L bands. (b) ASE spectra when the NLC PolCon was adjusted for (i) maximum and (iii) minimum transmission between the crossed polarizers. Spectrum (ii) is the difference between (i) and (iii).

Fig. 5
Fig. 5

Experimental setup for the PMD compensation in a 40-Gbit/s optical transmission system. Tx, transmitter; PBS, polarization beam splitter; TD, tunable delay; PMDE:PMD emulator; PBC, polarization beam combiner; PD, photodetector; PMDC, PMD compensator; ATT, optical attenuator; EDFA, erbium-doped fiber amplifier; F, optical filter; Rx, receiver.

Fig. 6
Fig. 6

(a) Receiver sensitivity after PMD compensation compared with the back-to-back operation (no PMD, without NLC PolCon) in a 40-Gbit/s 33% return-to-zero transmission system for different amounts of DGD. (b) Eye diagrams for 100-ps DGD before PMD compensation (top) and after PMD compensation (bottom).

Metrics