Abstract

A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, W. R. Leeb, “Space-borne optical communications—A challenging reality,” Special Symposium on Agile Optical Beams and Applications, IEEE LEOS 15th Annual Meeting, Invited Paper (WD2), Glasgow, Scotland, November 10–14, 2002.
  2. G. S. Mecherle, “Active pointing for terrestrial free-space optics,” Special Symposium on Agile Optical Beams and Applications, IEEE LEOS 15th Annual Meeting, Invited Paper (WL1), Glasgow, Scotland, November 10–14, 2002.
  3. W. Klaus, “Development of LC optics for free-space laser communications,” Int. J. Electron. 56, 243–253 (2002).
    [CrossRef]
  4. F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” Optical Fiber Communication Conference, Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.
  5. R. L. Forward, “Passive beam-deflecting apparatus,” U.S. PatentNo. 3,612,659 (12October1971).
  6. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
    [CrossRef]
  7. E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
    [CrossRef]
  8. F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef] [PubMed]
  9. N. A. Riza, Y. Huang, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” IEEE-LEOS 12th Ann. Mtg. Conf. Proc.1, IEEE Catalog No. 99CH37009, 184–185 (1999).
  10. N. A. Riza, “MOST: Multiplexed optical scanner technology,” IEEE LEOS 13th Ann. Mtg. Conf. Proc.2, IEEE Catalog No. 00CH37080, 828–829 (2000).
  11. Z. Yaqoob, A. A. Rizvi, N. A. Riza, “Free-space wavelength-multiplexed optical scanner,” Appl. Opt. 40, 6425–6438 (2001).
    [CrossRef]
  12. Z. Yaqoob, N. A. Riza, “Free-space wavelength-multiplexed optical scanner demonstration,” Appl. Opt. 41, 5568–5573 (2002).
    [CrossRef] [PubMed]
  13. L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsek-homskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).
  14. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999).
    [CrossRef]
  15. O. M. Efimov, L. B. Glebov, H. P. Andre, “Measurement of induced refractive index in a photothermorefractive glass by a liquid-cell shearing interferometer,” Appl. Opt. 41, 1864–1871 (2002).
    [CrossRef] [PubMed]
  16. L. B. Glebov, V. I. Smirnov, C. M. Stickley, I. V. Ciapurin, “New approach to robust optics for HEL systems,” in Laser Weapons Technology III, W. E. Thompson, P. H. Merritt, eds., SPIE Proc.4724, 101–109 (2002).
    [CrossRef]

2002 (3)

2001 (1)

1999 (1)

1996 (1)

1992 (1)

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsek-homskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

1991 (1)

E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
[CrossRef]

Alibert, G.

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” Optical Fiber Communication Conference, Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Andre, H. P.

Burr, G. W.

Ciapurin, I. V.

L. B. Glebov, V. I. Smirnov, C. M. Stickley, I. V. Ciapurin, “New approach to robust optics for HEL systems,” in Laser Weapons Technology III, W. E. Thompson, P. H. Merritt, eds., SPIE Proc.4724, 101–109 (2002).
[CrossRef]

Delorme, F.

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” Optical Fiber Communication Conference, Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Efimov, O. M.

Forward, R. L.

R. L. Forward, “Passive beam-deflecting apparatus,” U.S. PatentNo. 3,612,659 (12October1971).

Glebov, L. B.

O. M. Efimov, L. B. Glebov, H. P. Andre, “Measurement of induced refractive index in a photothermorefractive glass by a liquid-cell shearing interferometer,” Appl. Opt. 41, 1864–1871 (2002).
[CrossRef] [PubMed]

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999).
[CrossRef]

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsek-homskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

L. B. Glebov, V. I. Smirnov, C. M. Stickley, I. V. Ciapurin, “New approach to robust optics for HEL systems,” in Laser Weapons Technology III, W. E. Thompson, P. H. Merritt, eds., SPIE Proc.4724, 101–109 (2002).
[CrossRef]

Glebova, L. N.

Huang, Y.

N. A. Riza, Y. Huang, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” IEEE-LEOS 12th Ann. Mtg. Conf. Proc.1, IEEE Catalog No. 99CH37009, 184–185 (1999).

Johnson, K. M.

E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

Klaus, W.

W. Klaus, “Development of LC optics for free-space laser communications,” Int. J. Electron. 56, 243–253 (2002).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
[CrossRef]

Leeb, W. R.

P. J. Winzer, W. R. Leeb, “Space-borne optical communications—A challenging reality,” Special Symposium on Agile Optical Beams and Applications, IEEE LEOS 15th Annual Meeting, Invited Paper (WD2), Glasgow, Scotland, November 10–14, 2002.

Maniloff, E. S.

E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

Mecherle, G. S.

G. S. Mecherle, “Active pointing for terrestrial free-space optics,” Special Symposium on Agile Optical Beams and Applications, IEEE LEOS 15th Annual Meeting, Invited Paper (WL1), Glasgow, Scotland, November 10–14, 2002.

Mok, F. H.

Nakajima, H.

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” Optical Fiber Communication Conference, Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Nikonorov, N. V.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsek-homskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Ougier, C.

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” Optical Fiber Communication Conference, Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Panysheva, E. I.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsek-homskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Petrovskii, G. T.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsek-homskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Psaltis, D.

Richardson, K. C.

Riza, N. A.

Z. Yaqoob, N. A. Riza, “Free-space wavelength-multiplexed optical scanner demonstration,” Appl. Opt. 41, 5568–5573 (2002).
[CrossRef] [PubMed]

Z. Yaqoob, A. A. Rizvi, N. A. Riza, “Free-space wavelength-multiplexed optical scanner,” Appl. Opt. 40, 6425–6438 (2001).
[CrossRef]

N. A. Riza, Y. Huang, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” IEEE-LEOS 12th Ann. Mtg. Conf. Proc.1, IEEE Catalog No. 99CH37009, 184–185 (1999).

N. A. Riza, “MOST: Multiplexed optical scanner technology,” IEEE LEOS 13th Ann. Mtg. Conf. Proc.2, IEEE Catalog No. 00CH37080, 828–829 (2000).

Rizvi, A. A.

Savvin, V. V.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsek-homskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Slempkes, S.

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” Optical Fiber Communication Conference, Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

Smirnov, V. I.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999).
[CrossRef]

L. B. Glebov, V. I. Smirnov, C. M. Stickley, I. V. Ciapurin, “New approach to robust optics for HEL systems,” in Laser Weapons Technology III, W. E. Thompson, P. H. Merritt, eds., SPIE Proc.4724, 101–109 (2002).
[CrossRef]

Stickley, C. M.

L. B. Glebov, V. I. Smirnov, C. M. Stickley, I. V. Ciapurin, “New approach to robust optics for HEL systems,” in Laser Weapons Technology III, W. E. Thompson, P. H. Merritt, eds., SPIE Proc.4724, 101–109 (2002).
[CrossRef]

Tsek-homskii, V. A.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsek-homskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Tunimanova, I. V.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsek-homskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Winzer, P. J.

P. J. Winzer, W. R. Leeb, “Space-borne optical communications—A challenging reality,” Special Symposium on Agile Optical Beams and Applications, IEEE LEOS 15th Annual Meeting, Invited Paper (WD2), Glasgow, Scotland, November 10–14, 2002.

Yaqoob, Z.

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).
[CrossRef]

Int. J. Electron. (1)

W. Klaus, “Development of LC optics for free-space laser communications,” Int. J. Electron. 56, 243–253 (2002).
[CrossRef]

J. Appl. Phys. (1)

E. S. Maniloff, K. M. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (1)

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsek-homskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Other (7)

L. B. Glebov, V. I. Smirnov, C. M. Stickley, I. V. Ciapurin, “New approach to robust optics for HEL systems,” in Laser Weapons Technology III, W. E. Thompson, P. H. Merritt, eds., SPIE Proc.4724, 101–109 (2002).
[CrossRef]

N. A. Riza, Y. Huang, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” IEEE-LEOS 12th Ann. Mtg. Conf. Proc.1, IEEE Catalog No. 99CH37009, 184–185 (1999).

N. A. Riza, “MOST: Multiplexed optical scanner technology,” IEEE LEOS 13th Ann. Mtg. Conf. Proc.2, IEEE Catalog No. 00CH37080, 828–829 (2000).

F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” Optical Fiber Communication Conference, Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.

R. L. Forward, “Passive beam-deflecting apparatus,” U.S. PatentNo. 3,612,659 (12October1971).

P. J. Winzer, W. R. Leeb, “Space-borne optical communications—A challenging reality,” Special Symposium on Agile Optical Beams and Applications, IEEE LEOS 15th Annual Meeting, Invited Paper (WD2), Glasgow, Scotland, November 10–14, 2002.

G. S. Mecherle, “Active pointing for terrestrial free-space optics,” Special Symposium on Agile Optical Beams and Applications, IEEE LEOS 15th Annual Meeting, Invited Paper (WL1), Glasgow, Scotland, November 10–14, 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) M-tilted Bragg gratings stored in a single PTR glass volume, (b) schematic of a free-space 2D wavelength-multiplexed optical scanner with multiple tilted Bragg gratings stored in N PTR glass volumes (M gratings in each volume) cascaded next to each other. V i : ith PTR glass volume.

Fig. 2
Fig. 2

(a) Shows the orientation (θ i , ϕ i ) of grating vectors K i ; i = 1, 2, … M, where θ i , ϕ i ∈ [0, π]; (b) and (c) show two scenarios where θ i < π/2 generates a +1 order deflected beam and θ i > π/2 produces a -1 order deflected beam, respectively.

Fig. 3
Fig. 3

Optimum index of modulation Δn opt,i versus θ i , the angle between the grating vector K i and the z axis, at λ i = 1550 nm.

Fig. 4
Fig. 4

Maximum diffraction efficiency for Δn opt,i versus θ i , the angle between the grating vector K i and the z axis, at λ i = 1550 nm.

Fig. 5
Fig. 5

(a) and (b) show period L i of the Bragg grating (satisfying the Bragg condition at λ i = 1550 nm) versus θ i , the angle between the grating vector K i and the z axis.

Fig. 6
Fig. 6

Diffraction efficiency curves versus the wavelength of the tunable laser source for different values of θ i at λ i = 1550 nm. For each θ i , the period of the Bragg grating is adjusted according to Eq. (2) such that the Bragg condition remains satisfied at λ i = 1550 nm.

Fig. 7
Fig. 7

Proof-of-concept free-space W-MOS setup conducted by use of four untilted (θ i = 90°) Bragg-grating structures with ∼816 lines/mm spatial frequency, each stored in a single PTR glass volume of thickness d = 1.6 mm.

Fig. 8
Fig. 8

Angular scan and the diffraction efficiency plots versus the wavelength of the tunable source in the visible region.

Fig. 9
Fig. 9

Theoretical plot of the diffraction efficiency of a Bragg grating with thickness d = 1.6 mm for two values of index of modulation Δn = 7.0 × 10-4 and Δn = 7.8 × 10-4.

Fig. 10
Fig. 10

Angular scan and the diffraction efficiency plots versus the wavelength of a tunable source in the IR.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

η=sin2πΔndλ cos θ,
2nLi cos θi=mλi,
m=-1θi>π/2+1θi<π/2.
αi=θi-π2,
2nLi sin αi=-mλi.
θout=sin-1n sin2αi
=-sin-1n sin2θi.
|αi|12sin-11n.
θi=π2+αi.
π2-12sin-11nθiπ2+12sin-11n.
η=1-mλi cos θinLiγ2γ2+ξ2sin2γ2+ξ2,
γ=πΔndλi1-mλi cos θinLi,
ξ=-πd2L2 cos θi-mλinLi.
mλinLi=2 cos θi+2Liξπd.
η=1-2 cos2 θi-2Liξ cos θiπdγ2γ2+ξ2sin2γ2+ξ2.
mλinLi=2 cos θi.
ηB=|1-2 cos2 θi|sin2γB,
γB=πΔnidλi|1-2 cos2 θi|.
Δnopt,i=λi|1-2 cos2 θi|2d.
i=1M Δnopt,iΔnmax.
Δλλ=-ξLiπd cos θi,
ηηB=1-2 cos2 θi-2Liξ cos θiπd|1-2 cos2 θi|×γB2γB2+ξ2sin2γB2+ξ2sin2γB.
ηηBγB2γB2+ξ2sin2γB2+ξ2sin2γB.
θ4-θ1=2θB4-θB1,

Metrics