Abstract

We propose optical polarization imaging as a minimally invasive technique for measuring the mechanical properties of plastics and soft tissues through their change in reflectance properties with applied strain or force. We suggest that changes in surface roughness are responsible for the linear reflectivity changes with applied stretch or strain. Several aspects of this model are tested, including the dependence on the angle of incidence, the change in scattering and absorption coefficients with strain, and the lateral spatial resolution. The application of the technique to multilayer structures such as skin and competing optical effects such as laser speckle are discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Noninvasive light-reflection technique for measuring soft-tissue stretch

John F. Federici, Nejat Guzelsu, Hee C. Lim, Glen Jannuzzi, Tom Findley, Hans R. Chaudhry, and Art B. Ritter
Appl. Opt. 38(31) 6653-6660 (1999)

Polarization of light reflected from rough planetary surface

Milo Wolff
Appl. Opt. 14(6) 1395-1405 (1975)

Modeling of the rough-interface effect on a converging light beam propagating in a skin tissue phantom

Jun Q. Lu, Xin-Hua Hu, and Ke Dong
Appl. Opt. 39(31) 5890-5897 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription