Abstract

We investigate the various contrast mechanisms provided by polarization-sensitive (PS) Mueller-matrix optical coherence tomography (OCT). Our PS multichannel Mueller-matrix OCT is the first, to our knowledge, to offer simultaneously comprehensive polarization-contrast mechanisms, including the amplitude of birefringence, the orientation of birefringence, and the diattenuation in addition to the polarization-independent intensity contrast, all of which can be extracted from the measured Jones or the equivalent Mueller matrix. Theoretical analysis shows that when diattenuation is negligible, the round-trip Jones matrix represents a linear retarder, which is the foundation of conventional PS-OCT, and can be calculated with a single incident polarization state, although the one-way Jones matrix generally represents an elliptical retarder; otherwise, two incident polarization states are needed. The experimental results obtained from rat skin samples, which conform well with the histology, show that Mueller OCT provides complementary structural and functional information on biological samples and reveal that polarization contrast is more sensitive to thermal degeneration of biological tissue than amplitude-based contrast. Thus, Mueller OCT has significant potential for application in the noninvasive assessment of burn depth.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
    [CrossRef]
  2. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [CrossRef] [PubMed]
  3. G. Yao, L.-H. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999).
    [CrossRef]
  4. S. Jiao, G. Yao, L.-H. V. Wang, “Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography,” Appl. Opt. 39, 6318–6324 (2000).
    [CrossRef]
  5. S. Jiao, L.-H. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002).
    [CrossRef]
  6. S. Jiao, L.-H. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
    [CrossRef] [PubMed]
  7. Z. Chen, T. E. Milner, D. Dave, J. S. Nelson, “Optical Doppler tomography imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).
    [CrossRef] [PubMed]
  8. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welsh, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
    [CrossRef]
  9. S. A. Boppart, M. E. Brezinski, C. Pitris, J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery 43, 1992–1998 (1998).
    [CrossRef]
  10. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
    [CrossRef] [PubMed]
  11. G. Marquez, L.-H. Wang, S.-P. Lin, J. A. Schwartz, S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–804 (1998).
    [CrossRef]
  12. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, New York, 1998).
  13. S. Y. Lu, R. A. Chipman, “Homogenous and inhomogenous Jones matrix,” J. Opt. Soc. Am. A 11, 766–772 (1994).
    [CrossRef]
  14. Y. Pan, R. Birngruber, J. Rosperich, R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995).
    [CrossRef] [PubMed]
  15. Y. Pan, R. Birngruber, R. Engelhardt, “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt. 36, 2979–2983 (1997).
    [CrossRef] [PubMed]
  16. S. Jiao, W. Yu, G. Stoica, L.-H. V. Wang, “Optical-fiber-based Mueller optical coherence tomography,” Opt. Lett. 28, 1206–1208 (2003).
    [CrossRef] [PubMed]
  17. J. M. Schmitt, S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett. 23, 1060–1062 (1998).
    [CrossRef]
  18. M. I. Mishchenko, J. W. Hovenier, “Depolarization of light scattered by randomly oriented nonspherical particles,” Opt. Lett. 20, 1356–1358 (1995).
    [CrossRef] [PubMed]

2003

2002

S. Jiao, L.-H. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002).
[CrossRef]

S. Jiao, L.-H. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

2001

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[CrossRef] [PubMed]

2000

1999

1998

1997

1995

1994

1992

Barton, J. K.

Birngruber, R.

Boppart, S. A.

S. A. Boppart, M. E. Brezinski, C. Pitris, J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery 43, 1992–1998 (1998).
[CrossRef]

Brezinski, M. E.

S. A. Boppart, M. E. Brezinski, C. Pitris, J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery 43, 1992–1998 (1998).
[CrossRef]

Brosseau, C.

C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, New York, 1998).

Chen, Z.

Chipman, R. A.

Dave, D.

de Boer, J. F.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[CrossRef] [PubMed]

Engelhardt, R.

Fujimoto, J. G.

S. A. Boppart, M. E. Brezinski, C. Pitris, J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery 43, 1992–1998 (1998).
[CrossRef]

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
[CrossRef]

Hee, M. R.

Hovenier, J. W.

Huang, D.

Izatt, J. A.

Jiao, S.

Kulkarni, M. D.

Lin, S.-P.

Lu, S. Y.

Marquez, G.

Milner, T. E.

Mishchenko, M. I.

Nelson, J. S.

Pan, Y.

Park, B. H.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[CrossRef] [PubMed]

Pitris, C.

S. A. Boppart, M. E. Brezinski, C. Pitris, J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery 43, 1992–1998 (1998).
[CrossRef]

Rosperich, J.

Saxer, C.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[CrossRef] [PubMed]

Schmitt, J. M.

Schwartz, J. A.

Srinivas, S. M.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[CrossRef] [PubMed]

Stoica, G.

Swanson, E. A.

Thomsen, S. L.

van Gemert, M. J. C.

Wang, L.-H.

Wang, L.-H. V.

Welsh, A. J.

Xiang, S. H.

Yao, G.

Yazdanfar, S.

Yu, W.

Appl. Opt.

J. Biomed. Opt.

S. Jiao, L.-H. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Neurosurgery

S. A. Boppart, M. E. Brezinski, C. Pitris, J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery 43, 1992–1998 (1998).
[CrossRef]

Opt. Lett.

Z. Chen, T. E. Milner, D. Dave, J. S. Nelson, “Optical Doppler tomography imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welsh, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[CrossRef] [PubMed]

G. Yao, L.-H. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999).
[CrossRef]

S. Jiao, L.-H. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002).
[CrossRef]

S. Jiao, W. Yu, G. Stoica, L.-H. V. Wang, “Optical-fiber-based Mueller optical coherence tomography,” Opt. Lett. 28, 1206–1208 (2003).
[CrossRef] [PubMed]

J. M. Schmitt, S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett. 23, 1060–1062 (1998).
[CrossRef]

M. I. Mishchenko, J. W. Hovenier, “Depolarization of light scattered by randomly oriented nonspherical particles,” Opt. Lett. 20, 1356–1358 (1995).
[CrossRef] [PubMed]

Other

C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Conventional OCT image (in logarithmic scale), (b) intensity image (M 00, in logarithmic scale), (c) retardation image, (d) differential retardation image, (e) image of the orientation of the fast axis, (f) polarization histologic image of an in situ rat tail. The height of each image is 750 μm. The gray scales are for the orientation (θ2) and the retardation (ϕ2) images. The conventional OCT image was obtained with vertical linear polarization states for both the incident and the reference beams. F, fat; K, keratin; DP, dermal papilla.

Fig. 2
Fig. 2

(a) Intensity image (M 00, in logarithmic scale), (b) retardation image, (c) diattenuation image, (d) polarization histologic image of a piece of ex vivo rat skin with a burn lesion. The height of each image is 750 μm. The gray scales are for the retardation (ϕ2) and the diattenuation (D 2) images. B, burn region.

Fig. 3
Fig. 3

Average of 10 depth profiles of the retardation around the center of the burn area and the normal region to the right of the burn area.

Fig. 4
Fig. 4

Averaged depth profiles of the intensity (in logarithmic scale) and retardation over the region marked with a horizontal white bar in Fig. 1(b). Labels (1), (2), and (3), layers revealed.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

D=Pq2-Pr2/ Pq2+Pr2,
dϕ=k¯δn LsdLs,
ϕ2=2cos-112|trJ2+detJ2/|detJ2|trJ2*|trJ2*J2+2|detJ2|1/2,
D2=1- 4|detJ2|2trJ2*J221/2,
E2=E2hE2v,
θ2=arc tanE2vE2h.
J2= J1TJ1,
J1ϕ1, θ1, δ1=cosϕ1/2+i sinϕ1/2cos 2θ1i sinϕ1/2sin 2θ1 exp-iδ1i sinϕ1/2sin 2θ1 expiδ1cosϕ1/2-i sinϕ1/2cos 2θ1=J11,1J11,2-J11,2*J11,1*.
cos θ1sin θ1 expiδ1
-sin θ1 exp-iδ1cos θ1,
Ei=EihEiv,
Eo=EohEov
EohEov=J2EihEiv.
Eov*-Eoh*=J2Eiv*-Eih*.
J2=EohEov*Eov-Eoh*EihEiv*Eiv-Eih*-1.
ĨdLr=2 IsIr1/2-RLs1/2 cosβLsexp× -4ΔL/Lc2cosk¯ΔLdLs,
cosβ Ls=EsLs·Er/ |EsLsEr|,
J2m =i=1mJ1Tii=m1J1i.

Metrics