Abstract

We introduce a modified Tikhonov regularization method to include three-dimensional x-ray mammography as a prior in the diffuse optical tomography reconstruction. With simulations we show that the optical image reconstruction resolution and contrast are improved by implementing this x-ray-guided spatial constraint. We suggest an approach to find the optimal regularization parameters. The presented preliminary clinical result indicates the utility of the method.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
    [CrossRef]
  2. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  3. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18 (6), 57–75 (2001).
    [CrossRef]
  4. Y. Hoshi, M. Tamura, “Near-infrared optical detection of sequential brain activation in the prefrontal cortex during mental tasks,” Neuroimage 5, 292–297 (1997).
    [CrossRef] [PubMed]
  5. A. Maki, Y. Yamashita, E. Watanabe, H. Koizumi, “Visualizing human motor activity by using non-invasive optical topography,” Front. Med. Biol. Eng. 7, 285–297 (1996).
    [PubMed]
  6. B. Chance, A. Endla, N. Shoko, Z. Shuoming, H. Long, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org
    [CrossRef] [PubMed]
  7. M. A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, S. Fanini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6, 49–57 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  8. S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
    [CrossRef] [PubMed]
  9. J. P. Culver, V. Ntziachristos, M. J. Holboke, A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett. 26, 701–703 (2001).
    [CrossRef]
  10. R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, R. Aronson, ““MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2(4), 63–77 (1995).
    [CrossRef]
  11. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
    [CrossRef] [PubMed]
  12. Q. Zhu, T. Durduran, V. Ntziachristos, M. Holboke, A. G. Yodh, “Imager that combines near-infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050–1052 (1999).
    [CrossRef]
  13. M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation (Department of Physics, Unversity of Pennsylvania, Philadelphia, Pa., 1996).
  14. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
    [CrossRef]
  15. O. Arikan, “Regularized inversion of a two-dimensional integral equation with applications in borehole induction measurements,” Radio Sci. 29, 519–538 (1994).
    [CrossRef]
  16. M. Belge, M. Kilmer, L. E. Miller, “Efficient determination of multiple regularization parameters in a generalized L-curve framework,” Inverse Probl. 18, 1161–1183 (2002).
    [CrossRef]
  17. S. R. Arridge, M. Schweiger, “Inverse methods for optical tomography,” in Proceedings of Information Processing in Medical Imaging (IPMI’93), H. H. Barrett, A. F. Gmitro, eds., Vol. 687 of Lecture Notes in Computer Science, (Springer-Verlag, New York, 1993).
    [CrossRef]
  18. S. R. Arridge, “Photo-measurement density functions. Part I: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
    [CrossRef] [PubMed]
  19. D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. dissertation (Department of Physics, University of Pennsylvania, Philadelphia, Pa., 1996).
  20. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
    [CrossRef] [PubMed]
  21. Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, Proc. SPIE4250, 219–238 (2001).
    [CrossRef]
  22. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion (SIAM Press, Philadelphia, Pa., 1998).
    [CrossRef]
  23. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
    [CrossRef] [PubMed]
  24. L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
    [PubMed]
  25. T. Wu, “Three dimensional mammography reconstruction using low dose projection images, Ph. D. dissertation (Department of Physics, Brandeis University, Waltham, Mass., 2002).
  26. M. J. D. Eppstein, D. E. Troy, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
    [CrossRef]

2003

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

2002

M. Belge, M. Kilmer, L. E. Miller, “Efficient determination of multiple regularization parameters in a generalized L-curve framework,” Inverse Probl. 18, 1161–1183 (2002).
[CrossRef]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef] [PubMed]

2001

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18 (6), 57–75 (2001).
[CrossRef]

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett. 26, 701–703 (2001).
[CrossRef]

2000

M. A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, S. Fanini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6, 49–57 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

1999

1998

1997

Y. Hoshi, M. Tamura, “Near-infrared optical detection of sequential brain activation in the prefrontal cortex during mental tasks,” Neuroimage 5, 292–297 (1997).
[CrossRef] [PubMed]

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

1996

A. Maki, Y. Yamashita, E. Watanabe, H. Koizumi, “Visualizing human motor activity by using non-invasive optical topography,” Front. Med. Biol. Eng. 7, 285–297 (1996).
[PubMed]

1995

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, R. Aronson, ““MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2(4), 63–77 (1995).
[CrossRef]

S. R. Arridge, “Photo-measurement density functions. Part I: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

1994

O. Arikan, “Regularized inversion of a two-dimensional integral equation with applications in borehole induction measurements,” Radio Sci. 29, 519–538 (1994).
[CrossRef]

Albagli, D.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Arikan, O.

O. Arikan, “Regularized inversion of a two-dimensional integral equation with applications in borehole induction measurements,” Radio Sci. 29, 519–538 (1994).
[CrossRef]

Aronson, R.

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, R. Aronson, ““MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2(4), 63–77 (1995).
[CrossRef]

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

S. R. Arridge, “Photo-measurement density functions. Part I: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Inverse methods for optical tomography,” in Proceedings of Information Processing in Medical Imaging (IPMI’93), H. H. Barrett, A. F. Gmitro, eds., Vol. 687 of Lecture Notes in Computer Science, (Springer-Verlag, New York, 1993).
[CrossRef]

Barbour, R. L.

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, R. Aronson, ““MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2(4), 63–77 (1995).
[CrossRef]

Barbour, S. S.

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, R. Aronson, ““MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2(4), 63–77 (1995).
[CrossRef]

Belge, M.

M. Belge, M. Kilmer, L. E. Miller, “Efficient determination of multiple regularization parameters in a generalized L-curve framework,” Inverse Probl. 18, 1161–1183 (2002).
[CrossRef]

Benaron, D. A.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

Boas, D. A.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18 (6), 57–75 (2001).
[CrossRef]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, Proc. SPIE4250, 219–238 (2001).
[CrossRef]

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. dissertation (Department of Physics, University of Pennsylvania, Philadelphia, Pa., 1996).

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18 (6), 57–75 (2001).
[CrossRef]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Brukilacchio, T. J.

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, Proc. SPIE4250, 219–238 (2001).
[CrossRef]

Castleberry, D. E.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Chance, B.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef] [PubMed]

B. Chance, A. Endla, N. Shoko, Z. Shuoming, H. Long, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411–423 (1998), http://www.opticsexpress.org
[CrossRef] [PubMed]

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

Chang, J.

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, R. Aronson, ““MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2(4), 63–77 (1995).
[CrossRef]

Choe, R.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Christian, B. T.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Culver, J. P.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett. 26, 701–703 (2001).
[CrossRef]

DeJule, M. C.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

DiMarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18 (6), 57–75 (2001).
[CrossRef]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Durduran, T.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Q. Zhu, T. Durduran, V. Ntziachristos, M. Holboke, A. G. Yodh, “Imager that combines near-infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050–1052 (1999).
[CrossRef]

Endla, A.

Eppstein, M. J. D.

Fanini, S.

Filiaci, M.

Fitzgerald, P. E.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Fobare, D. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Franceschini, M. A.

Gaudett, T.

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, Proc. SPIE4250, 219–238 (2001).
[CrossRef]

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18 (6), 57–75 (2001).
[CrossRef]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Gaudette, T.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Giambattista, B. W.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Giardino, A. A.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Graber, H. L.

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, R. Aronson, ““MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2(4), 63–77 (1995).
[CrossRef]

Gratton, E.

Hansen, P. C.

P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion (SIAM Press, Philadelphia, Pa., 1998).
[CrossRef]

Hintz, S. R.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

Holboke, M.

Holboke, M. J.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett. 26, 701–703 (2001).
[CrossRef]

Hoshi, Y.

Y. Hoshi, M. Tamura, “Near-infrared optical detection of sequential brain activation in the prefrontal cortex during mental tasks,” Neuroimage 5, 292–297 (1997).
[CrossRef] [PubMed]

Kilmer, M.

M. Belge, M. Kilmer, L. E. Miller, “Efficient determination of multiple regularization parameters in a generalized L-curve framework,” Inverse Probl. 18, 1161–1183 (2002).
[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18 (6), 57–75 (2001).
[CrossRef]

Kilmer, M. E.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Koizumi, H.

A. Maki, Y. Yamashita, E. Watanabe, H. Koizumi, “Visualizing human motor activity by using non-invasive optical topography,” Front. Med. Biol. Eng. 7, 285–297 (1996).
[PubMed]

Koo, P. C.

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, R. Aronson, ““MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2(4), 63–77 (1995).
[CrossRef]

Kopans, D. B.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Kwasnick, R. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Landberg, C. E.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Li, A.

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, Proc. SPIE4250, 219–238 (2001).
[CrossRef]

Li, C.

Liu, J.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Long, H.

Lubowski, S. J.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Maki, A.

A. Maki, Y. Yamashita, E. Watanabe, H. Koizumi, “Visualizing human motor activity by using non-invasive optical topography,” Front. Med. Biol. Eng. 7, 285–297 (1996).
[PubMed]

McBride, T. O.

Miller, E. L.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18 (6), 57–75 (2001).
[CrossRef]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Miller, L. E.

M. Belge, M. Kilmer, L. E. Miller, “Efficient determination of multiple regularization parameters in a generalized L-curve framework,” Inverse Probl. 18, 1161–1183 (2002).
[CrossRef]

Moore, R.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Murray, T.

Niklason, L. E.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Niklason, L. T.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Ntziachristos, V.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett. 26, 701–703 (2001).
[CrossRef]

Q. Zhu, T. Durduran, V. Ntziachristos, M. Holboke, A. G. Yodh, “Imager that combines near-infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050–1052 (1999).
[CrossRef]

O’Leary, M. A.

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation (Department of Physics, Unversity of Pennsylvania, Philadelphia, Pa., 1996).

Opsahl-Ong, B. H.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Osterberg, U. L.

Ovetsky, Y.

Paulsen, K. D.

Pidikiti, D.

Pogue, B. W.

Possin, G. E.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Prewitt, J.

Richotte, J. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef] [PubMed]

Schweiger, M.

S. R. Arridge, M. Schweiger, “Inverse methods for optical tomography,” in Proceedings of Information Processing in Medical Imaging (IPMI’93), H. H. Barrett, A. F. Gmitro, eds., Vol. 687 of Lecture Notes in Computer Science, (Springer-Verlag, New York, 1993).
[CrossRef]

Sevick-Muraca, E. M.

Shoko, N.

Shuoming, Z.

Siegel, A. M.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

Slanetz, P. J.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Slemp, A.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Stevenson, D. K.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

Tamura, M.

Y. Hoshi, M. Tamura, “Near-infrared optical detection of sequential brain activation in the prefrontal cortex during mental tasks,” Neuroimage 5, 292–297 (1997).
[CrossRef] [PubMed]

Thomas, R.

Toronov, V.

Troy, D. E.

Troy, T. L.

Wang, L.

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, Proc. SPIE4250, 219–238 (2001).
[CrossRef]

Watanabe, E.

A. Maki, Y. Yamashita, E. Watanabe, H. Koizumi, “Visualizing human motor activity by using non-invasive optical topography,” Front. Med. Biol. Eng. 7, 285–297 (1996).
[PubMed]

Wei, C.-Y.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Wirth, R. F.

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Worden, K.

Wu, T.

T. Wu, “Three dimensional mammography reconstruction using low dose projection images, Ph. D. dissertation (Department of Physics, Brandeis University, Waltham, Mass., 2002).

Yamashita, Y.

A. Maki, Y. Yamashita, E. Watanabe, H. Koizumi, “Visualizing human motor activity by using non-invasive optical topography,” Front. Med. Biol. Eng. 7, 285–297 (1996).
[PubMed]

Yodh, A.

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

Yodh, A. G.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett. 26, 701–703 (2001).
[CrossRef]

Q. Zhu, T. Durduran, V. Ntziachristos, M. Holboke, A. G. Yodh, “Imager that combines near-infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050–1052 (1999).
[CrossRef]

Zhang, Q.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18 (6), 57–75 (2001).
[CrossRef]

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, Proc. SPIE4250, 219–238 (2001).
[CrossRef]

Zhu, Q.

Zourabian, A.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

Zubkov, L.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Front. Med. Biol. Eng.

A. Maki, Y. Yamashita, E. Watanabe, H. Koizumi, “Visualizing human motor activity by using non-invasive optical topography,” Front. Med. Biol. Eng. 7, 285–297 (1996).
[PubMed]

IEEE Comput. Sci. Eng.

R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, R. Aronson, ““MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2(4), 63–77 (1995).
[CrossRef]

IEEE Signal Process. Mag.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18 (6), 57–75 (2001).
[CrossRef]

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

M. Belge, M. Kilmer, L. E. Miller, “Efficient determination of multiple regularization parameters in a generalized L-curve framework,” Inverse Probl. 18, 1161–1183 (2002).
[CrossRef]

J. Perinat. Med.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001).
[CrossRef] [PubMed]

Med. Phys.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef] [PubMed]

Neoplasia

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[CrossRef] [PubMed]

Neuroimage

Y. Hoshi, M. Tamura, “Near-infrared optical detection of sequential brain activation in the prefrontal cortex during mental tasks,” Neuroimage 5, 292–297 (1997).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45, 1051–1070 (2000).
[CrossRef] [PubMed]

Phys. Today

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

Radio Sci.

O. Arikan, “Regularized inversion of a two-dimensional integral equation with applications in borehole induction measurements,” Radio Sci. 29, 519–538 (1994).
[CrossRef]

Radiology

L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. E. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C.-Y. Wei, R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
[PubMed]

Other

T. Wu, “Three dimensional mammography reconstruction using low dose projection images, Ph. D. dissertation (Department of Physics, Brandeis University, Waltham, Mass., 2002).

Q. Zhang, T. J. Brukilacchio, T. Gaudett, L. Wang, A. Li, D. A. Boas, “Experimental comparison of using continuous-wave and frequency-domain diffuse optical imaging systems to detect heterogeneities,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, Proc. SPIE4250, 219–238 (2001).
[CrossRef]

P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion (SIAM Press, Philadelphia, Pa., 1998).
[CrossRef]

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. dissertation (Department of Physics, University of Pennsylvania, Philadelphia, Pa., 1996).

S. R. Arridge, M. Schweiger, “Inverse methods for optical tomography,” in Proceedings of Information Processing in Medical Imaging (IPMI’93), H. H. Barrett, A. F. Gmitro, eds., Vol. 687 of Lecture Notes in Computer Science, (Springer-Verlag, New York, 1993).
[CrossRef]

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation (Department of Physics, Unversity of Pennsylvania, Philadelphia, Pa., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Absorption anomaly to be reconstructed. (b) Absorption image reconstruction of simulated data by use of conventional Tikhonov regularization (image units are in reciprocal centimeters). (c) Image reconstructed with a spatial prior for the regularization. The spatial prior has the correct spatial information for the location of the heterogeneity. (d) Image reconstructed with the original optical image in (b) as a spatial prior, as described in the text. The field of view of the image is 6 cm × 6 cm, and image slices are shown every centimeter.

Fig. 2
Fig. 2

Plot of objective measures of the reconstructed images versus regularization parameter α2. (a) CBNR versus α2, and (b) CONR versus α2.

Fig. 3
Fig. 3

Plot of the FWHM of the reconstructed absorbing heterogeneity in the (a) lateral and (b) axial directions versus regularization parameter α2.

Fig. 4
Fig. 4

(a) Plot of the L curve for the Tikhonov regularization reconstructed in Fig. 1(a). Here α2 has the same value as α1. The arrows point to the L corner and indicate the direction of increasing α1. (b) CNR versus α2. α1 = 0.7 remains constant at the value determined in (a). The arrows point to the maximum CNR. The filled circles indicate the CNR for the x-ray constraint. The open circles indicate the CNR when the optical image is used as the spatial constraint.

Fig. 5
Fig. 5

Absorption image reconstruction of simulated data by use of an incorrect spatial prior in the lateral direction (image units are in reciprocal centimeters): (a) true target (white region) and ROI (gray region) and (b) reconstructed image. The centers of the spatial prior and the real object are displaced laterally by 3 cm along the x axis. The reconstruction of simulated data with an incorrect spatial prior in the axial direction: (c) true target (white) and ROI (gray) and (d) reconstructed image. The centers of the spatial prior and the real object are axially displaced by 2 cm along the z axis. The field of view of the image is 6 cm × 6 cm, and image slices are shown every centimeter.

Fig. 6
Fig. 6

Slice (z = 3.6 cm) of the 3-D x-ray image from the patient. The circles indicate the positions of the 40 sources and the squares indicate the positions of the nine detectors. The lesion is indicated by the thick dark line with diffuse extension indicated by the thin dark line. The field of view is 12 cm × 9 cm.

Fig. 7
Fig. 7

(a) Absorption image reconstruction of the clinical data by use of conventional Tikhonov regularization. (b) The 3-D x-ray images after a threshold was assigned to define the spatial prior. The black voxels indicate the regions suspected of having a lesion. (c) The reconstruction of the clinical data by use of the spatial prior from (b) for regularization.

Fig. 8
Fig. 8

(a) Plot of the L curve for the clinical image shown in Fig. 7(a). Here α2 has the same value as α1. The arrow in the graph points to the L corner. (b) CNR versus α2. α1 = 0.0075 remains constant at the value determined in (a). The arrow points to the maximum CNR.

Fig. 9
Fig. 9

(a) Spatial prior defined from a threshold of the original optical image in Fig. 7(a). (b) The reconstructed absorption image using (a) as the spatial prior. The image units are in reciprocal centimeters. The field of view of the image is 12 cm × 10 cm, and image slices are shown every centimeter.

Fig. 10
Fig. 10

(a) Larger volume 3-D spatial prior derived by use of a lower threshold on the x-ray image. (b) Image reconstruction by use of the larger volume spatial constraint.

Fig. 11
Fig. 11

Absorption image reconstruction of clinical data by use of an artificial spatial prior (image units are in reciprocal centimeters). The field of view of the image is 12 cm × 10 cm, and image slices are shown every centimeter.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

fx=y -Ax2 +λ1I -Sx2 +λ2Sx2.
x=ATA+Iλ r-1ATy.
λr=λ1 if r is in region 1λ2 if r is in region 2.

Metrics