Abstract

A miniaturized sensor head for endoscopic measurements based on digital holography is described. The system was developed to measure the shape and the three-dimensional deformation of objects located at places to which there is no access by common measurement systems. A miniaturized optical sensor, including a complete digital holographic interferometer with a CCD camera, is placed at the end of a flexible endoscope. The diameter of the head is smaller than 10 mm. The system enables interferometric measurements to be made at speeds of as many as five reconstructions per second, and it can be used outside the laboratory under normal environmental conditions. Shape measurements are performed with two wavelengths for contouring, and the deformation is measured by digital holographic interferometry. To obtain full three-dimensional data in displacement measurements we illuminate the object sequentially from three different illumination directions. To increase the lateral resolution we use temporal phase shifting.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Kemper, D. Dirksen, W. Avenhaus, A. Merker, G. von Bally, “Endoscopic double-pulse electronic-speckle-pattern interferometer for technical and medical intracavity inspection,” Appl. Opt. 39, 3899–3905 (1999).
    [CrossRef]
  2. G. Pedrini, S. Schedin, H. J. Tiziani, “Use of endoscopes in pulsed digital holographic interferometry,” in Optical Measurement Systems for Industrial Inspection II: Applications in Production Engineering, R. Höfling, W. Jüptner, M. Kujawinska, eds., Proc. SPIE4399, 1–8 (2001).
    [CrossRef]
  3. O. Coquoz, R. Conde, R. Taleblou, C. Depeursinge, “Performances of endoscopic holography with a multicore optical fiber,” Appl. Opt. 34, 7186–7193 (1995).
    [CrossRef] [PubMed]
  4. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 665–670 (1994).
    [CrossRef]
  5. S. Seebacher, W. Osten, W. Jüptner, “Measuring shape and deformation of small objects using digital holography,” in Laser Interferometry IX, R. Pryputniewicz, G. Brown, W. Jüptner, eds., Proc. SPIE3479, 104–115 (1998).
    [CrossRef]
  6. W. Osten, “Some considerations on the statistical error analysis in holographic interferometry with application to an optimized interferometer,” Opt. Acta 32, 827–838 (1985).
    [CrossRef]
  7. C. Wagner, S. Seebacher, W. Osten, W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999).
    [CrossRef]
  8. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef] [PubMed]
  9. S. Lai, E. Kolenovic, W. Osten, W. Jüptner, “A deformation and 3D-shape measurement system based on phase-shifting digital holography,” in Third International Conference on Experimental Mechanics, X. Wu, Y. Qin, J. Fang, J. Ke, eds., Proc. SPIE4537, 273–276 (2002).
    [CrossRef]
  10. S. Lai, B. King, A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line holography,” Opt. Commun. 173, 155–160 (2000).
    [CrossRef]
  11. S. Seebacher, W. Osten, Th. Baumbach, W. Jüptner, “The determination of material parameters of micro components using digital holography,” Opt. Lasers Eng. 36, 103–126 (2001).
    [CrossRef]
  12. J. M. Huntley, H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32, 3047–3052 (1993).
    [CrossRef] [PubMed]

2001 (1)

S. Seebacher, W. Osten, Th. Baumbach, W. Jüptner, “The determination of material parameters of micro components using digital holography,” Opt. Lasers Eng. 36, 103–126 (2001).
[CrossRef]

2000 (1)

S. Lai, B. King, A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line holography,” Opt. Commun. 173, 155–160 (2000).
[CrossRef]

1999 (2)

1997 (1)

1995 (1)

1994 (1)

U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 665–670 (1994).
[CrossRef]

1993 (1)

1985 (1)

W. Osten, “Some considerations on the statistical error analysis in holographic interferometry with application to an optimized interferometer,” Opt. Acta 32, 827–838 (1985).
[CrossRef]

Avenhaus, W.

Baumbach, Th.

S. Seebacher, W. Osten, Th. Baumbach, W. Jüptner, “The determination of material parameters of micro components using digital holography,” Opt. Lasers Eng. 36, 103–126 (2001).
[CrossRef]

Conde, R.

Coquoz, O.

Depeursinge, C.

Dirksen, D.

Huntley, J. M.

Jüptner, W.

S. Seebacher, W. Osten, Th. Baumbach, W. Jüptner, “The determination of material parameters of micro components using digital holography,” Opt. Lasers Eng. 36, 103–126 (2001).
[CrossRef]

C. Wagner, S. Seebacher, W. Osten, W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999).
[CrossRef]

S. Seebacher, W. Osten, W. Jüptner, “Measuring shape and deformation of small objects using digital holography,” in Laser Interferometry IX, R. Pryputniewicz, G. Brown, W. Jüptner, eds., Proc. SPIE3479, 104–115 (1998).
[CrossRef]

S. Lai, E. Kolenovic, W. Osten, W. Jüptner, “A deformation and 3D-shape measurement system based on phase-shifting digital holography,” in Third International Conference on Experimental Mechanics, X. Wu, Y. Qin, J. Fang, J. Ke, eds., Proc. SPIE4537, 273–276 (2002).
[CrossRef]

Kemper, B.

King, B.

S. Lai, B. King, A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line holography,” Opt. Commun. 173, 155–160 (2000).
[CrossRef]

Kolenovic, E.

S. Lai, E. Kolenovic, W. Osten, W. Jüptner, “A deformation and 3D-shape measurement system based on phase-shifting digital holography,” in Third International Conference on Experimental Mechanics, X. Wu, Y. Qin, J. Fang, J. Ke, eds., Proc. SPIE4537, 273–276 (2002).
[CrossRef]

Lai, S.

S. Lai, B. King, A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line holography,” Opt. Commun. 173, 155–160 (2000).
[CrossRef]

S. Lai, E. Kolenovic, W. Osten, W. Jüptner, “A deformation and 3D-shape measurement system based on phase-shifting digital holography,” in Third International Conference on Experimental Mechanics, X. Wu, Y. Qin, J. Fang, J. Ke, eds., Proc. SPIE4537, 273–276 (2002).
[CrossRef]

Merker, A.

Neifeld, A.

S. Lai, B. King, A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line holography,” Opt. Commun. 173, 155–160 (2000).
[CrossRef]

Osten, W.

S. Seebacher, W. Osten, Th. Baumbach, W. Jüptner, “The determination of material parameters of micro components using digital holography,” Opt. Lasers Eng. 36, 103–126 (2001).
[CrossRef]

C. Wagner, S. Seebacher, W. Osten, W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999).
[CrossRef]

W. Osten, “Some considerations on the statistical error analysis in holographic interferometry with application to an optimized interferometer,” Opt. Acta 32, 827–838 (1985).
[CrossRef]

S. Lai, E. Kolenovic, W. Osten, W. Jüptner, “A deformation and 3D-shape measurement system based on phase-shifting digital holography,” in Third International Conference on Experimental Mechanics, X. Wu, Y. Qin, J. Fang, J. Ke, eds., Proc. SPIE4537, 273–276 (2002).
[CrossRef]

S. Seebacher, W. Osten, W. Jüptner, “Measuring shape and deformation of small objects using digital holography,” in Laser Interferometry IX, R. Pryputniewicz, G. Brown, W. Jüptner, eds., Proc. SPIE3479, 104–115 (1998).
[CrossRef]

Pedrini, G.

G. Pedrini, S. Schedin, H. J. Tiziani, “Use of endoscopes in pulsed digital holographic interferometry,” in Optical Measurement Systems for Industrial Inspection II: Applications in Production Engineering, R. Höfling, W. Jüptner, M. Kujawinska, eds., Proc. SPIE4399, 1–8 (2001).
[CrossRef]

Saldner, H.

Schedin, S.

G. Pedrini, S. Schedin, H. J. Tiziani, “Use of endoscopes in pulsed digital holographic interferometry,” in Optical Measurement Systems for Industrial Inspection II: Applications in Production Engineering, R. Höfling, W. Jüptner, M. Kujawinska, eds., Proc. SPIE4399, 1–8 (2001).
[CrossRef]

Schnars, U.

U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 665–670 (1994).
[CrossRef]

Seebacher, S.

S. Seebacher, W. Osten, Th. Baumbach, W. Jüptner, “The determination of material parameters of micro components using digital holography,” Opt. Lasers Eng. 36, 103–126 (2001).
[CrossRef]

C. Wagner, S. Seebacher, W. Osten, W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999).
[CrossRef]

S. Seebacher, W. Osten, W. Jüptner, “Measuring shape and deformation of small objects using digital holography,” in Laser Interferometry IX, R. Pryputniewicz, G. Brown, W. Jüptner, eds., Proc. SPIE3479, 104–115 (1998).
[CrossRef]

Taleblou, R.

Tiziani, H. J.

G. Pedrini, S. Schedin, H. J. Tiziani, “Use of endoscopes in pulsed digital holographic interferometry,” in Optical Measurement Systems for Industrial Inspection II: Applications in Production Engineering, R. Höfling, W. Jüptner, M. Kujawinska, eds., Proc. SPIE4399, 1–8 (2001).
[CrossRef]

von Bally, G.

Wagner, C.

Yamaguchi, I.

Zhang, T.

Appl. Opt. (4)

J. Opt. Soc. Am. A (1)

U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 665–670 (1994).
[CrossRef]

Opt. Acta (1)

W. Osten, “Some considerations on the statistical error analysis in holographic interferometry with application to an optimized interferometer,” Opt. Acta 32, 827–838 (1985).
[CrossRef]

Opt. Commun. (1)

S. Lai, B. King, A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line holography,” Opt. Commun. 173, 155–160 (2000).
[CrossRef]

Opt. Lasers Eng. (1)

S. Seebacher, W. Osten, Th. Baumbach, W. Jüptner, “The determination of material parameters of micro components using digital holography,” Opt. Lasers Eng. 36, 103–126 (2001).
[CrossRef]

Opt. Lett. (1)

Other (3)

G. Pedrini, S. Schedin, H. J. Tiziani, “Use of endoscopes in pulsed digital holographic interferometry,” in Optical Measurement Systems for Industrial Inspection II: Applications in Production Engineering, R. Höfling, W. Jüptner, M. Kujawinska, eds., Proc. SPIE4399, 1–8 (2001).
[CrossRef]

S. Lai, E. Kolenovic, W. Osten, W. Jüptner, “A deformation and 3D-shape measurement system based on phase-shifting digital holography,” in Third International Conference on Experimental Mechanics, X. Wu, Y. Qin, J. Fang, J. Ke, eds., Proc. SPIE4537, 273–276 (2002).
[CrossRef]

S. Seebacher, W. Osten, W. Jüptner, “Measuring shape and deformation of small objects using digital holography,” in Laser Interferometry IX, R. Pryputniewicz, G. Brown, W. Jüptner, eds., Proc. SPIE3479, 104–115 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the sensor head.

Fig. 2
Fig. 2

Photo of the sensor head. The sensor body has a diameter of 9.75 mm and a length of 35 mm.

Fig. 3
Fig. 3

Schematic of the external devices.

Fig. 4
Fig. 4

(a) Two-wavelength-contouring phase map of the resistor; (b) three-dimensional object shape (in millimeters).

Fig. 5
Fig. 5

(a)–(c) Wrapped phase maps of three different illumination directions for a three-dimensional deformation measurement; (d) temporal unwrapped phase of (c).

Fig. 6
Fig. 6

Plot of combined shape and deformation data. The shape is scaled in millimeters; the deformation is scaled at 0.3 μm for better visibility.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λSynth=1λ1-1λ2-1.
x=zλCCDx μ, y=zλCCDy η,

Metrics