Abstract

Recently we introduced a novel procedure that estimates Doppler angle and flow velocity simultaneously by combining Doppler-shift and Doppler-bandwidth measurements with a conventional single-beam optical Doppler tomography device. Here we validate this method experimentally with two Intralipid flow setups that correspond to fixed Doppler angle and fixed flow speed. One set of data has a fixed flow speed of 53.6 mm/s with a Doppler angle that changes from 56° to 90°; the other has a fixed Doppler angle of 80° with flow speed that changes from 18.5 to 141.9 mm/s. As obtained with the method introduced here, the Doppler-angle estimation accuracies of the two sets are 97.6% and 98.2%, respectively, and the estimation accuracies of flow speeds of the two sets are 94.3% and 90.4%, respectively.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Son. Ultrason. SU-27, 50–59 (1980).
    [CrossRef]
  2. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27, 409–411 (2002).
    [CrossRef]
  3. X. J. Wang, T. E. Milner, J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1134–1142 (1999).
    [CrossRef]
  6. T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, J. A. Izatt, “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,” Opt. Lett. 24, 1584–1586 (1999).
    [CrossRef]
  7. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
    [CrossRef]
  8. Y. H. Zhao, Z. P. Chen, C. Saxer, Q. M. Shen, S. H. Xiang, J. F. de Boer, J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000).
    [CrossRef]
  9. D. Piao, L. Otis, Q. Zhu, “Doppler angle and flow velocity mapping by combining Doppler shift and Doppler bandwidth measurements in optical Doppler tomography,” Opt. Lett. 28, 1120–1122 (2003).
    [CrossRef] [PubMed]
  10. D. Piao, L. Otis, N. K. Dutta, Q. Zhu, “Quantitative assessment of flow velocity estimation algorithms for optical Doppler tomography imaging,” Appl. Opt. 41, 6118–6127 (2002).
    [CrossRef] [PubMed]
  11. C. Kasai, K. Namekawa, A. Koyano, R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Son. Ultrason. SU-32, 458–463 (1985).
    [CrossRef]
  12. J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000).
    [CrossRef]
  13. C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, The Mechanics of the Circulation (Oxford University Press, Oxford, United Kingdom, 1978).
  14. B. L. Petrig, C. E. Riva, “Retinal laser Doppler velocimetry: toward its computer-assisted clinical use,” Appl. Opt. 27, 1126–1134 (1988).
    [CrossRef] [PubMed]
  15. P. C. Li, C. J. Cheng, C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1084–1091 (2001).
    [CrossRef] [PubMed]
  16. T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the NIR wavelength range of 1000–2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
    [CrossRef] [PubMed]
  17. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, A. J. Welch, J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography,” Opt. Lett. 23, 1057–1059 (1998).
    [CrossRef]
  18. S. Yan, D. Piao, Q. Zhu, “A DSP-based optical Doppler tomography system for real-time signal processing,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. T. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956 (to be published).

2003 (1)

2002 (2)

2001 (2)

P. C. Li, C. J. Cheng, C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1084–1091 (2001).
[CrossRef] [PubMed]

T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the NIR wavelength range of 1000–2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

2000 (3)

1999 (2)

T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, J. A. Izatt, “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,” Opt. Lett. 24, 1584–1586 (1999).
[CrossRef]

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1134–1142 (1999).
[CrossRef]

1998 (1)

1995 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1988 (1)

1985 (1)

C. Kasai, K. Namekawa, A. Koyano, R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Son. Ultrason. SU-32, 458–463 (1985).
[CrossRef]

1980 (1)

V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Son. Ultrason. SU-27, 50–59 (1980).
[CrossRef]

Bleam, D.

J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000).
[CrossRef]

Brecke, K. M.

Caro, C. G.

C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, The Mechanics of the Circulation (Oxford University Press, Oxford, United Kingdom, 1978).

Cèspedes, E. I.

J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

Chen, Z. P.

Cheng, C. J.

P. C. Li, C. J. Cheng, C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1084–1091 (2001).
[CrossRef] [PubMed]

Crowe, J. R.

J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000).
[CrossRef]

de Boer, J. F.

Ding, Z.

Dutta, N. K.

Eberle, M. J.

J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Frostig, R. D.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1134–1142 (1999).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Furgason, E. S.

V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Son. Ultrason. SU-27, 50–59 (1980).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

Johnson, G. F.

V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Son. Ultrason. SU-27, 50–59 (1980).
[CrossRef]

Kasai, C.

C. Kasai, K. Namekawa, A. Koyano, R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Son. Ultrason. SU-32, 458–463 (1985).
[CrossRef]

Kovach, J. A.

J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000).
[CrossRef]

Koyano, A.

C. Kasai, K. Namekawa, A. Koyano, R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Son. Ultrason. SU-32, 458–463 (1985).
[CrossRef]

Kulkarni, M. D.

Lederman, R. J.

J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000).
[CrossRef]

Li, P. C.

P. C. Li, C. J. Cheng, C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1084–1091 (2001).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Milner, T. E.

Muller, D. W. M.

J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000).
[CrossRef]

Namekawa, K.

C. Kasai, K. Namekawa, A. Koyano, R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Son. Ultrason. SU-32, 458–463 (1985).
[CrossRef]

Nelson, J. S.

Newhouse, V. L.

V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Son. Ultrason. SU-27, 50–59 (1980).
[CrossRef]

O’Donnell, M.

J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000).
[CrossRef]

Omoto, R.

C. Kasai, K. Namekawa, A. Koyano, R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Son. Ultrason. SU-32, 458–463 (1985).
[CrossRef]

Otis, L.

Pedley, T. J.

C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, The Mechanics of the Circulation (Oxford University Press, Oxford, United Kingdom, 1978).

Petrig, B. L.

Piao, D.

D. Piao, L. Otis, Q. Zhu, “Doppler angle and flow velocity mapping by combining Doppler shift and Doppler bandwidth measurements in optical Doppler tomography,” Opt. Lett. 28, 1120–1122 (2003).
[CrossRef] [PubMed]

D. Piao, L. Otis, N. K. Dutta, Q. Zhu, “Quantitative assessment of flow velocity estimation algorithms for optical Doppler tomography imaging,” Appl. Opt. 41, 6118–6127 (2002).
[CrossRef] [PubMed]

S. Yan, D. Piao, Q. Zhu, “A DSP-based optical Doppler tomography system for real-time signal processing,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. T. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956 (to be published).

Prakash, N.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1134–1142 (1999).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ren, H.

Riva, C. E.

Rollins, A. M.

Saxer, C.

Schroter, R. C.

C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, The Mechanics of the Circulation (Oxford University Press, Oxford, United Kingdom, 1978).

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seed, W. A.

C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, The Mechanics of the Circulation (Oxford University Press, Oxford, United Kingdom, 1978).

Shapo, B. M.

J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000).
[CrossRef]

Shen, Q. M.

Srinivas, S. M.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1134–1142 (1999).
[CrossRef]

Stephens, D. N.

J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Thennadil, S. N.

T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the NIR wavelength range of 1000–2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the NIR wavelength range of 1000–2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

van Leeuwen, T. G.

Wang, X. J.

Welch, A. J.

Wolf, D. A.

V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Son. Ultrason. SU-27, 50–59 (1980).
[CrossRef]

Wu, C. C.

J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000).
[CrossRef]

Xiang, S. H.

Yan, S.

S. Yan, D. Piao, Q. Zhu, “A DSP-based optical Doppler tomography system for real-time signal processing,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. T. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956 (to be published).

Yazdanfar, S.

Yeh, C. K.

P. C. Li, C. J. Cheng, C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1084–1091 (2001).
[CrossRef] [PubMed]

Zhao, Y.

Zhao, Y. H.

Zhu, Q.

D. Piao, L. Otis, Q. Zhu, “Doppler angle and flow velocity mapping by combining Doppler shift and Doppler bandwidth measurements in optical Doppler tomography,” Opt. Lett. 28, 1120–1122 (2003).
[CrossRef] [PubMed]

D. Piao, L. Otis, N. K. Dutta, Q. Zhu, “Quantitative assessment of flow velocity estimation algorithms for optical Doppler tomography imaging,” Appl. Opt. 41, 6118–6127 (2002).
[CrossRef] [PubMed]

S. Yan, D. Piao, Q. Zhu, “A DSP-based optical Doppler tomography system for real-time signal processing,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. T. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956 (to be published).

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1134–1142 (1999).
[CrossRef]

IEEE Trans. Son. Ultrason. (2)

C. Kasai, K. Namekawa, A. Koyano, R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Son. Ultrason. SU-32, 458–463 (1985).
[CrossRef]

V. L. Newhouse, E. S. Furgason, G. F. Johnson, D. A. Wolf, “The dependence of ultrasound Doppler bandwidth on beam geometry,” IEEE Trans. Son. Ultrason. SU-27, 50–59 (1980).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

P. C. Li, C. J. Cheng, C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1084–1091 (2001).
[CrossRef] [PubMed]

J. R. Crowe, B. M. Shapo, D. N. Stephens, D. Bleam, M. J. Eberle, E. I. Cèspedes, C. C. Wu, D. W. M. Muller, J. A. Kovach, R. J. Lederman, M. O’Donnell, “Blood speed imaging with an intraluminal array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 672–681 (2000).
[CrossRef]

J. Biomed. Opt. (1)

T. L. Troy, S. N. Thennadil, “Optical properties of human skin in the NIR wavelength range of 1000–2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[CrossRef] [PubMed]

Opt. Lett. (7)

D. Piao, L. Otis, Q. Zhu, “Doppler angle and flow velocity mapping by combining Doppler shift and Doppler bandwidth measurements in optical Doppler tomography,” Opt. Lett. 28, 1120–1122 (2003).
[CrossRef] [PubMed]

Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
[CrossRef]

X. J. Wang, T. E. Milner, J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995).
[CrossRef] [PubMed]

M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, A. J. Welch, J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography,” Opt. Lett. 23, 1057–1059 (1998).
[CrossRef]

T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, J. A. Izatt, “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,” Opt. Lett. 24, 1584–1586 (1999).
[CrossRef]

Y. H. Zhao, Z. P. Chen, C. Saxer, Q. M. Shen, S. H. Xiang, J. F. de Boer, J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000).
[CrossRef]

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27, 409–411 (2002).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

S. Yan, D. Piao, Q. Zhu, “A DSP-based optical Doppler tomography system for real-time signal processing,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. T. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4956 (to be published).

C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed, The Mechanics of the Circulation (Oxford University Press, Oxford, United Kingdom, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the sliding-window filtering technique. The sliding-window filtering bank is applied to measure the components of each interference signal that change at a rate corresponding to the passband of the filters.

Fig. 2
Fig. 2

Laminar-flow simulation model incorporating both Doppler shift and Doppler bandwidth. (a) Schematic of the simulation model, (b) amplitude image of a simulated 2-D flow signal, (c) 1-D spectrum bandwidth and corresponding Doppler-shift profiles of the simulated signal, (d) 1-D A-line profile of the simulated signal, manifesting the uniformity of signal strength across the flow region.

Fig. 3
Fig. 3

Schematic of the experimental Intralipid flow loop: GRIN, graded index.

Fig. 4
Fig. 4

Comparison of the spectrum bandwidth estimation made with three techniques, namely, the STFT method, the autocorrelation method, and the sliding-window filtering method. (a) Estimation accuracy as a function of SNR, (b) example of 1-D spectrum bandwidth profiles estimated by the three methods on typical experimental flow data.

Fig. 5
Fig. 5

Performance of Doppler-angle and flow-velocity estimation on Intralipid flow data. The first experimental setup has a fixed flow velocity and changing Doppler angle. The second experimental setup has a fixed Doppler angle and changing flow velocity. (a) Doppler-angle estimation profile for the first setup. The actual Doppler angle varies from 56° to 90° in 1° increments. (b) Flow-velocity estimation profiles based on calculated Doppler angle and actual Doppler angle for the first setup. The actual flow velocity is 53.6 mm/s. (c) Doppler-angle estimation profile for the second setup. The actual Doppler angle is 80°. (d) Flow-velocity estimation profiles based on calculated Doppler angle and actual Doppler angle for the second setup. The actual flow velocity varies from 18.5 to 141.9 mm/s in nonuniform steps.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

f¯=2v cos θλ,
Δf=πln 22vNAeff sin θλ+b,
θ=tan-14πln 21NAeffΔf-bf¯
v=f¯λ2 cos θ.
z˜k,it=|z˜k,it|expjωt,
Pk,inω=STFTk,itn, ωSTFTk,itn, ω¯.
σ=π32 Bd,
Ck,inτ=tn-NTtn Z˜k,it+τ×Z˜k,i+1t¯dt,
Rk,inτ=tn-Ntstn z˜k,it+τ×z˜k,it¯dt,
σk,in22T21-|Ck,inT|Rk,in0.
σk,in22ΔT21-|Rk,inΔT|Rk,in0,
Δωk,in=4ln 2σ.
Õmtn=z˜k,itn  F-1ωm,
εmtn=t=tn-Δt/2tn+Δt/2Õmt2,
ω¯k,in=2mˆ-12M π-ω0.
ε¯tn=1Mm=1M εmtn.
Δωk,in=Δω¯tnln 2lnεmaxtn/ε¯tn1/2.
Z˜k,itn=S˜ktn, ti  F-1Fan,kω, ω+Ñktn, ti,
Fan,kω=uωFknω+jFˆknω,
Pknω=exp-ω-ωptn2Δω1/2tn/2ln 22.
dvvdθθ=dvdθθv=|θ tan θ|.

Metrics