Abstract

The results of measurements of the refractive index and power attenuation coefficient of Zitex at 290, 77, and 4 K in the spectral region from 1 to 1000 μm are presented. Zitex is a porous Teflon sheet with a filling factor of ∼50% and is manufactured in several varieties as a filter paper. Zitex is found to be an effective IR block, with thin (200-μm) sheets transmitting less than 1% in the 1–50-μm range while attenuating ≲10% at wavelengths longer than 200 μm. Some variation in the cutoff wavelength is seen, tending to be a shorter-wavelength cutoff for a smaller pore size. In addition, the thermal conductivity of Zitex at cryogenic temperatures has been measured and is found to be roughly one half that of bulk Teflon. Finally, its dielectric constant has been measured in the submillimeter as n = 1.20, resulting in extremely low dielectric reflection losses. As a result, Zitex is particularly useful as an IR blocking filter in low-noise heterodyne receivers; in the millimeter-wave range (λ ≳ 850 μm or ν ≤ 350 GHz) the attenuation of α ≤ 0.01 cm-1 for a 3.5-mm thickness filter of Zitex G125 would raise receiver noise temperatures by <1 K.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Hunter, D. J. Benford, E. Serabyn, “Optical design of the submillimeter high angular resolution camera (SHARC),” Pub. Astron. Soc. Pac. 108, 1042 (1996).
    [CrossRef]
  2. J. W. Kooi, M. Chan, B. Bumble, H. G. LeDuc, P. L. Schaffer, T. G. Phillips, “230 and 492 GHz low-noise SIS waveguide received employing tuned Nb/AlOx/Nb tunnel junctions,” Int. J. Infrared Millim. Waves 16, 2049–2068 (1995).
    [CrossRef]
  3. J. M. Blea, W. F. Parks, P. A. R. Ade, R. J. Bell, “Optical properties of black polyethylene from 3 to 4000 cm-1,” J. Opt. Soc. Am. 60, 603 (1970).
    [CrossRef]
  4. D. J. Benford, J. W. Kooi, E. Serabyn, “Spectroscopic measurements of optical components around 1 terahertz,” in Proceedings of the Ninth International Symposium on Space Terahertz Technology, R. McGrath, ed. (NASA/JPL, Pasadena, Calif., 1998), pp. 405–413.
  5. J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
    [CrossRef]
  6. Norton Performance Plastics (now Saint-Gobain Performance Plastics), 150 Dey Road, Wayne, N.J. 07470, www.nortonplastics.com .
  7. S. Sato, S. Hayakawa, T. Matsumoto, H. Matsuo, H. Murakami, K. Sakai, A. E. Lange, P. L. Richards, “Submillimeter wave low pass filters made of glass beads,” Appl. Opt. 28, 4478–4481 (1989).
    [CrossRef] [PubMed]
  8. J. Kawamura, S. Paine, D. C. Papa, “Spectroscopic measurements of optical elements for submillimeter receivers,” Proceedings of the Seventh International Symposium on Space Terahertz Technology, R. Weikle, G. Rebeiz, T. Crowe, eds. (University of Virginia, Charlottesville, Va., 1996), pp. 349–355.
  9. G. Zhao, M. ter Mors, T. Wenckebach, P. C. M. Planken, “Terahertz dielectric properties of polystrene foam,” J. Opt. Soc. Am. B 19, 1476–1479 (2002).
    [CrossRef]
  10. Nicolet 60SX spectrometer, Thermo Nicolet Corporation, 5225 Verona Road, Madison, Wis. 53711, www.thermo.com .
  11. Bruker Optics Inc., 19 Fortune Drive, Manning Park, Billerica, Mass. 01821–3991, www.brukeroptics.com .
  12. M. Bin, D. J. Benford, M. C. Gaidis, T. H. Büttgenbach, J. Zmuidzinas, T. G. Phillips, “A large throughput high resolution Fourier transform spectrometer for submillimeter applications,” Int. J. Infrared Millim. Waves, 20, 383–400 (1999).
    [CrossRef]
  13. J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystrene,” Infrared Phys. 6, 33–38 (1992).
    [CrossRef]
  14. F. Bréhat, B. Wyncke, “Measurements of the optical constants of crystal quartz at 10K and 300K in the far infrared spectral range: 10–600 cm-1,” Int. J. Infrared Millim. Waves 18, 1663–1679 (1997).
    [CrossRef]
  15. D. J. Benford, T. J. Powers, S. H. Moseley, “Thermal conductivity of Kapton tape,” Cryogenics 39, 93–95 (1999).
    [CrossRef]
  16. G. E. Childs, L. J. Ericks, R. L. Powell, “Thermal conductivity of solids at room temperature and below,” NIST-NBS Monograph 131 (National Institute of Standard and Technology, Gaithersburg Md., 1973).
  17. J. W. Lamb, A. Baryshev, M. E. Carter, L. R. D’Addario, B. N. Ellison, W. Grammer, B. Lazareff, Y. Sekimoto, C. Y. Thom, “ALMA receiver optics design,” ALMA Memo 362, http://www.alma.nrao.edu/memos/html-memos/abstracts/abs362.html . (2001).
  18. G. A. Ediss, D. Koller, “68.5 to 118 GHz measurements of possible infrared filter materials: black polyethylene, Zitex, and grooved and un-grooved fluorogold and HDPE,” ALMA Memo 412, http://www.alma.nrao.edu/memos/html-memos/abstracts/abs412.html (2002).

2002

1999

M. Bin, D. J. Benford, M. C. Gaidis, T. H. Büttgenbach, J. Zmuidzinas, T. G. Phillips, “A large throughput high resolution Fourier transform spectrometer for submillimeter applications,” Int. J. Infrared Millim. Waves, 20, 383–400 (1999).
[CrossRef]

D. J. Benford, T. J. Powers, S. H. Moseley, “Thermal conductivity of Kapton tape,” Cryogenics 39, 93–95 (1999).
[CrossRef]

1997

F. Bréhat, B. Wyncke, “Measurements of the optical constants of crystal quartz at 10K and 300K in the far infrared spectral range: 10–600 cm-1,” Int. J. Infrared Millim. Waves 18, 1663–1679 (1997).
[CrossRef]

1996

T. R. Hunter, D. J. Benford, E. Serabyn, “Optical design of the submillimeter high angular resolution camera (SHARC),” Pub. Astron. Soc. Pac. 108, 1042 (1996).
[CrossRef]

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
[CrossRef]

1995

J. W. Kooi, M. Chan, B. Bumble, H. G. LeDuc, P. L. Schaffer, T. G. Phillips, “230 and 492 GHz low-noise SIS waveguide received employing tuned Nb/AlOx/Nb tunnel junctions,” Int. J. Infrared Millim. Waves 16, 2049–2068 (1995).
[CrossRef]

1992

J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystrene,” Infrared Phys. 6, 33–38 (1992).
[CrossRef]

1989

1970

Ade, P. A. R.

Bell, R. J.

Benford, D. J.

M. Bin, D. J. Benford, M. C. Gaidis, T. H. Büttgenbach, J. Zmuidzinas, T. G. Phillips, “A large throughput high resolution Fourier transform spectrometer for submillimeter applications,” Int. J. Infrared Millim. Waves, 20, 383–400 (1999).
[CrossRef]

D. J. Benford, T. J. Powers, S. H. Moseley, “Thermal conductivity of Kapton tape,” Cryogenics 39, 93–95 (1999).
[CrossRef]

T. R. Hunter, D. J. Benford, E. Serabyn, “Optical design of the submillimeter high angular resolution camera (SHARC),” Pub. Astron. Soc. Pac. 108, 1042 (1996).
[CrossRef]

D. J. Benford, J. W. Kooi, E. Serabyn, “Spectroscopic measurements of optical components around 1 terahertz,” in Proceedings of the Ninth International Symposium on Space Terahertz Technology, R. McGrath, ed. (NASA/JPL, Pasadena, Calif., 1998), pp. 405–413.

Bin, M.

M. Bin, D. J. Benford, M. C. Gaidis, T. H. Büttgenbach, J. Zmuidzinas, T. G. Phillips, “A large throughput high resolution Fourier transform spectrometer for submillimeter applications,” Int. J. Infrared Millim. Waves, 20, 383–400 (1999).
[CrossRef]

Birch, J. R.

J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystrene,” Infrared Phys. 6, 33–38 (1992).
[CrossRef]

Blea, J. M.

Bréhat, F.

F. Bréhat, B. Wyncke, “Measurements of the optical constants of crystal quartz at 10K and 300K in the far infrared spectral range: 10–600 cm-1,” Int. J. Infrared Millim. Waves 18, 1663–1679 (1997).
[CrossRef]

Bumble, B.

J. W. Kooi, M. Chan, B. Bumble, H. G. LeDuc, P. L. Schaffer, T. G. Phillips, “230 and 492 GHz low-noise SIS waveguide received employing tuned Nb/AlOx/Nb tunnel junctions,” Int. J. Infrared Millim. Waves 16, 2049–2068 (1995).
[CrossRef]

Büttgenbach, T. H.

M. Bin, D. J. Benford, M. C. Gaidis, T. H. Büttgenbach, J. Zmuidzinas, T. G. Phillips, “A large throughput high resolution Fourier transform spectrometer for submillimeter applications,” Int. J. Infrared Millim. Waves, 20, 383–400 (1999).
[CrossRef]

Chan, M.

J. W. Kooi, M. Chan, B. Bumble, H. G. LeDuc, P. L. Schaffer, T. G. Phillips, “230 and 492 GHz low-noise SIS waveguide received employing tuned Nb/AlOx/Nb tunnel junctions,” Int. J. Infrared Millim. Waves 16, 2049–2068 (1995).
[CrossRef]

Childs, G. E.

G. E. Childs, L. J. Ericks, R. L. Powell, “Thermal conductivity of solids at room temperature and below,” NIST-NBS Monograph 131 (National Institute of Standard and Technology, Gaithersburg Md., 1973).

Ericks, L. J.

G. E. Childs, L. J. Ericks, R. L. Powell, “Thermal conductivity of solids at room temperature and below,” NIST-NBS Monograph 131 (National Institute of Standard and Technology, Gaithersburg Md., 1973).

Gaidis, M. C.

M. Bin, D. J. Benford, M. C. Gaidis, T. H. Büttgenbach, J. Zmuidzinas, T. G. Phillips, “A large throughput high resolution Fourier transform spectrometer for submillimeter applications,” Int. J. Infrared Millim. Waves, 20, 383–400 (1999).
[CrossRef]

Hayakawa, S.

Hunter, T. R.

T. R. Hunter, D. J. Benford, E. Serabyn, “Optical design of the submillimeter high angular resolution camera (SHARC),” Pub. Astron. Soc. Pac. 108, 1042 (1996).
[CrossRef]

Kawamura, J.

J. Kawamura, S. Paine, D. C. Papa, “Spectroscopic measurements of optical elements for submillimeter receivers,” Proceedings of the Seventh International Symposium on Space Terahertz Technology, R. Weikle, G. Rebeiz, T. Crowe, eds. (University of Virginia, Charlottesville, Va., 1996), pp. 349–355.

Kooi, J. W.

J. W. Kooi, M. Chan, B. Bumble, H. G. LeDuc, P. L. Schaffer, T. G. Phillips, “230 and 492 GHz low-noise SIS waveguide received employing tuned Nb/AlOx/Nb tunnel junctions,” Int. J. Infrared Millim. Waves 16, 2049–2068 (1995).
[CrossRef]

D. J. Benford, J. W. Kooi, E. Serabyn, “Spectroscopic measurements of optical components around 1 terahertz,” in Proceedings of the Ninth International Symposium on Space Terahertz Technology, R. McGrath, ed. (NASA/JPL, Pasadena, Calif., 1998), pp. 405–413.

Lamb, J. W.

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
[CrossRef]

Lange, A. E.

LeDuc, H. G.

J. W. Kooi, M. Chan, B. Bumble, H. G. LeDuc, P. L. Schaffer, T. G. Phillips, “230 and 492 GHz low-noise SIS waveguide received employing tuned Nb/AlOx/Nb tunnel junctions,” Int. J. Infrared Millim. Waves 16, 2049–2068 (1995).
[CrossRef]

Matsumoto, T.

Matsuo, H.

Moseley, S. H.

D. J. Benford, T. J. Powers, S. H. Moseley, “Thermal conductivity of Kapton tape,” Cryogenics 39, 93–95 (1999).
[CrossRef]

Murakami, H.

Paine, S.

J. Kawamura, S. Paine, D. C. Papa, “Spectroscopic measurements of optical elements for submillimeter receivers,” Proceedings of the Seventh International Symposium on Space Terahertz Technology, R. Weikle, G. Rebeiz, T. Crowe, eds. (University of Virginia, Charlottesville, Va., 1996), pp. 349–355.

Papa, D. C.

J. Kawamura, S. Paine, D. C. Papa, “Spectroscopic measurements of optical elements for submillimeter receivers,” Proceedings of the Seventh International Symposium on Space Terahertz Technology, R. Weikle, G. Rebeiz, T. Crowe, eds. (University of Virginia, Charlottesville, Va., 1996), pp. 349–355.

Parks, W. F.

Phillips, T. G.

M. Bin, D. J. Benford, M. C. Gaidis, T. H. Büttgenbach, J. Zmuidzinas, T. G. Phillips, “A large throughput high resolution Fourier transform spectrometer for submillimeter applications,” Int. J. Infrared Millim. Waves, 20, 383–400 (1999).
[CrossRef]

J. W. Kooi, M. Chan, B. Bumble, H. G. LeDuc, P. L. Schaffer, T. G. Phillips, “230 and 492 GHz low-noise SIS waveguide received employing tuned Nb/AlOx/Nb tunnel junctions,” Int. J. Infrared Millim. Waves 16, 2049–2068 (1995).
[CrossRef]

Planken, P. C. M.

Powell, R. L.

G. E. Childs, L. J. Ericks, R. L. Powell, “Thermal conductivity of solids at room temperature and below,” NIST-NBS Monograph 131 (National Institute of Standard and Technology, Gaithersburg Md., 1973).

Powers, T. J.

D. J. Benford, T. J. Powers, S. H. Moseley, “Thermal conductivity of Kapton tape,” Cryogenics 39, 93–95 (1999).
[CrossRef]

Richards, P. L.

Sakai, K.

Sato, S.

Schaffer, P. L.

J. W. Kooi, M. Chan, B. Bumble, H. G. LeDuc, P. L. Schaffer, T. G. Phillips, “230 and 492 GHz low-noise SIS waveguide received employing tuned Nb/AlOx/Nb tunnel junctions,” Int. J. Infrared Millim. Waves 16, 2049–2068 (1995).
[CrossRef]

Serabyn, E.

T. R. Hunter, D. J. Benford, E. Serabyn, “Optical design of the submillimeter high angular resolution camera (SHARC),” Pub. Astron. Soc. Pac. 108, 1042 (1996).
[CrossRef]

D. J. Benford, J. W. Kooi, E. Serabyn, “Spectroscopic measurements of optical components around 1 terahertz,” in Proceedings of the Ninth International Symposium on Space Terahertz Technology, R. McGrath, ed. (NASA/JPL, Pasadena, Calif., 1998), pp. 405–413.

ter Mors, M.

Wenckebach, T.

Wyncke, B.

F. Bréhat, B. Wyncke, “Measurements of the optical constants of crystal quartz at 10K and 300K in the far infrared spectral range: 10–600 cm-1,” Int. J. Infrared Millim. Waves 18, 1663–1679 (1997).
[CrossRef]

Zhao, G.

Zmuidzinas, J.

M. Bin, D. J. Benford, M. C. Gaidis, T. H. Büttgenbach, J. Zmuidzinas, T. G. Phillips, “A large throughput high resolution Fourier transform spectrometer for submillimeter applications,” Int. J. Infrared Millim. Waves, 20, 383–400 (1999).
[CrossRef]

Appl. Opt.

Cryogenics

D. J. Benford, T. J. Powers, S. H. Moseley, “Thermal conductivity of Kapton tape,” Cryogenics 39, 93–95 (1999).
[CrossRef]

Infrared Phys.

J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystrene,” Infrared Phys. 6, 33–38 (1992).
[CrossRef]

Int. J. Infrared Millim. Waves

F. Bréhat, B. Wyncke, “Measurements of the optical constants of crystal quartz at 10K and 300K in the far infrared spectral range: 10–600 cm-1,” Int. J. Infrared Millim. Waves 18, 1663–1679 (1997).
[CrossRef]

M. Bin, D. J. Benford, M. C. Gaidis, T. H. Büttgenbach, J. Zmuidzinas, T. G. Phillips, “A large throughput high resolution Fourier transform spectrometer for submillimeter applications,” Int. J. Infrared Millim. Waves, 20, 383–400 (1999).
[CrossRef]

J. W. Kooi, M. Chan, B. Bumble, H. G. LeDuc, P. L. Schaffer, T. G. Phillips, “230 and 492 GHz low-noise SIS waveguide received employing tuned Nb/AlOx/Nb tunnel junctions,” Int. J. Infrared Millim. Waves 16, 2049–2068 (1995).
[CrossRef]

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Pub. Astron. Soc. Pac.

T. R. Hunter, D. J. Benford, E. Serabyn, “Optical design of the submillimeter high angular resolution camera (SHARC),” Pub. Astron. Soc. Pac. 108, 1042 (1996).
[CrossRef]

Other

G. E. Childs, L. J. Ericks, R. L. Powell, “Thermal conductivity of solids at room temperature and below,” NIST-NBS Monograph 131 (National Institute of Standard and Technology, Gaithersburg Md., 1973).

J. W. Lamb, A. Baryshev, M. E. Carter, L. R. D’Addario, B. N. Ellison, W. Grammer, B. Lazareff, Y. Sekimoto, C. Y. Thom, “ALMA receiver optics design,” ALMA Memo 362, http://www.alma.nrao.edu/memos/html-memos/abstracts/abs362.html . (2001).

G. A. Ediss, D. Koller, “68.5 to 118 GHz measurements of possible infrared filter materials: black polyethylene, Zitex, and grooved and un-grooved fluorogold and HDPE,” ALMA Memo 412, http://www.alma.nrao.edu/memos/html-memos/abstracts/abs412.html (2002).

Nicolet 60SX spectrometer, Thermo Nicolet Corporation, 5225 Verona Road, Madison, Wis. 53711, www.thermo.com .

Bruker Optics Inc., 19 Fortune Drive, Manning Park, Billerica, Mass. 01821–3991, www.brukeroptics.com .

J. Kawamura, S. Paine, D. C. Papa, “Spectroscopic measurements of optical elements for submillimeter receivers,” Proceedings of the Seventh International Symposium on Space Terahertz Technology, R. Weikle, G. Rebeiz, T. Crowe, eds. (University of Virginia, Charlottesville, Va., 1996), pp. 349–355.

D. J. Benford, J. W. Kooi, E. Serabyn, “Spectroscopic measurements of optical components around 1 terahertz,” in Proceedings of the Ninth International Symposium on Space Terahertz Technology, R. McGrath, ed. (NASA/JPL, Pasadena, Calif., 1998), pp. 405–413.

Norton Performance Plastics (now Saint-Gobain Performance Plastics), 150 Dey Road, Wayne, N.J. 07470, www.nortonplastics.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Far-IR transmission of a 0.75-mm-thick sheet of Teflon at 300 and 77 K. Fabry–Perot fringes can be seen in the transmissive region longward of 60 μm.

Fig. 2
Fig. 2

Mid-IR transmission of a 0.25-mm-thick Teflon sheet, highlighting the regions of good absorption.

Fig. 3
Fig. 3

Transmission and effective attenuation coefficient in nepers per centimeter of single sheets of Zitex G104 and G106 (pore sizes 5–6 and 4–5 μm, respectively).

Fig. 4
Fig. 4

Transmission and effective attenuation coefficient in nepers per centimeter of single sheets of Zitex G108 and G110 (pore sizes 3–4 and 1–2 μm, respectively) by use of near-, mid-, and far-IR data.

Fig. 5
Fig. 5

Transmission and effective attenuation coefficient of Zitex G115 and A155 (pore sizes 1–2 and 2–5 μm, respectively) in the near to mid-IR.

Fig. 6
Fig. 6

Transmission and attenuation coefficient in nepers per centimeter of Zitex G125 between 400 and 1600 GHz (188 and 750 μm).

Fig. 7
Fig. 7

Transmission and attenuation of Zitex G125 (pore size ∼3 μm).

Fig. 8
Fig. 8

Transmission of single, double, and triple layers of Zitex in close proximity. The transmission drops more slowly than for a pure absorbing medium, implying strong scattering.

Fig. 9
Fig. 9

Transmission of single and double layers of Zitex in an f/4 beam with 7-mm spacing. At mid-IR wavelengths, the Zitex acts as two scattering surfaces; at far-IR wavelengths, it acts like an absorber.

Fig. 10
Fig. 10

Far-IR transmission of Zitex G110 at 300 and 77 K. No substantial variation can be seen.

Tables (1)

Tables Icon

Table 1 Measured Zitex samples

Metrics