Abstract

A single-lens optical setup with a nonlinear medium placed in its geometrical focal plane is used to contrast a phase disturbance. This setup blends the robustness of phase-contrast methods with an optical nonlinear intensity-dependent medium and the usefulness of traditional interferometric techniques. We show that the ratio of the total illumination area to the phase-object area determines an adequate phase-disturbance contrast.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Anderson, “Fringe visibility, irradiance, and accuracy in common path interferometers for visualization of phase disturbances,” Appl. Opt. 34, 7474–7485 (1995).
    [CrossRef] [PubMed]
  2. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Fransisco, Calif., 1968).
  3. J. Gluckstad, P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282 (2001).
    [CrossRef]
  4. J. Liu, J. Xu, G. Zhang, S. Liu, “Phase contrast using photorefractive LiNbO3: Fe crystals,” Appl. Opt. 34, 4972–4975 (1995).
    [CrossRef] [PubMed]
  5. H. Rehn, R. Kowarschik, “Real-time non-linear spatial filtering with a leaky OASLM,” Opt. Laser Technol. 30, 39–47 (1998).
    [CrossRef]
  6. K. Harada, M. Itoh, S. Kotava, A. Naumov, A. Parfenov, T. Yatgai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147–155 (1998).
    [CrossRef]
  7. M. Y. Shih, A. Shishido, P. H. Chen, M. V. Wood, I. C. Koo, “All-optical image processing with a supranonlinear dye-doped liquid crystal film,” Opt. Lett. 25, 13–15 (2000).
    [CrossRef]
  8. A. Parfnev, “Nonlinear filtering in two-beam interferometer,” Appl. Opt. 39, 6515–6516 (2001).
  9. M. D. Iturbe Castillo, D. Sánchez-de-la-Llave, R. Ramos García, L. I. Olivos-Pérez, L. A. González, M. Rodríguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367–2368 (2001).
    [CrossRef]
  10. J. Gluckstad, “Adaptive array illumination and structured light generated by spatial zero-frequency self-phase modulation in a Kerr medium,” Opt. Commun. 120, 194–203 (1995).
    [CrossRef]

2001 (3)

J. Gluckstad, P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282 (2001).
[CrossRef]

A. Parfnev, “Nonlinear filtering in two-beam interferometer,” Appl. Opt. 39, 6515–6516 (2001).

M. D. Iturbe Castillo, D. Sánchez-de-la-Llave, R. Ramos García, L. I. Olivos-Pérez, L. A. González, M. Rodríguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367–2368 (2001).
[CrossRef]

2000 (1)

1998 (2)

H. Rehn, R. Kowarschik, “Real-time non-linear spatial filtering with a leaky OASLM,” Opt. Laser Technol. 30, 39–47 (1998).
[CrossRef]

K. Harada, M. Itoh, S. Kotava, A. Naumov, A. Parfenov, T. Yatgai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147–155 (1998).
[CrossRef]

1995 (3)

Anderson, C. S.

Chen, P. H.

Gluckstad, J.

J. Gluckstad, P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282 (2001).
[CrossRef]

J. Gluckstad, “Adaptive array illumination and structured light generated by spatial zero-frequency self-phase modulation in a Kerr medium,” Opt. Commun. 120, 194–203 (1995).
[CrossRef]

González, L. A.

M. D. Iturbe Castillo, D. Sánchez-de-la-Llave, R. Ramos García, L. I. Olivos-Pérez, L. A. González, M. Rodríguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367–2368 (2001).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Fransisco, Calif., 1968).

Harada, K.

K. Harada, M. Itoh, S. Kotava, A. Naumov, A. Parfenov, T. Yatgai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147–155 (1998).
[CrossRef]

Itoh, M.

K. Harada, M. Itoh, S. Kotava, A. Naumov, A. Parfenov, T. Yatgai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147–155 (1998).
[CrossRef]

Iturbe Castillo, M. D.

M. D. Iturbe Castillo, D. Sánchez-de-la-Llave, R. Ramos García, L. I. Olivos-Pérez, L. A. González, M. Rodríguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367–2368 (2001).
[CrossRef]

Koo, I. C.

Kotava, S.

K. Harada, M. Itoh, S. Kotava, A. Naumov, A. Parfenov, T. Yatgai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147–155 (1998).
[CrossRef]

Kowarschik, R.

H. Rehn, R. Kowarschik, “Real-time non-linear spatial filtering with a leaky OASLM,” Opt. Laser Technol. 30, 39–47 (1998).
[CrossRef]

Liu, J.

Liu, S.

Mogensen, P. C.

Naumov, A.

K. Harada, M. Itoh, S. Kotava, A. Naumov, A. Parfenov, T. Yatgai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147–155 (1998).
[CrossRef]

Olivos-Pérez, L. I.

M. D. Iturbe Castillo, D. Sánchez-de-la-Llave, R. Ramos García, L. I. Olivos-Pérez, L. A. González, M. Rodríguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367–2368 (2001).
[CrossRef]

Parfenov, A.

K. Harada, M. Itoh, S. Kotava, A. Naumov, A. Parfenov, T. Yatgai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147–155 (1998).
[CrossRef]

Parfnev, A.

Ramos García, R.

M. D. Iturbe Castillo, D. Sánchez-de-la-Llave, R. Ramos García, L. I. Olivos-Pérez, L. A. González, M. Rodríguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367–2368 (2001).
[CrossRef]

Rehn, H.

H. Rehn, R. Kowarschik, “Real-time non-linear spatial filtering with a leaky OASLM,” Opt. Laser Technol. 30, 39–47 (1998).
[CrossRef]

Rodríguez-Ortiz, M.

M. D. Iturbe Castillo, D. Sánchez-de-la-Llave, R. Ramos García, L. I. Olivos-Pérez, L. A. González, M. Rodríguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367–2368 (2001).
[CrossRef]

Sánchez-de-la-Llave, D.

M. D. Iturbe Castillo, D. Sánchez-de-la-Llave, R. Ramos García, L. I. Olivos-Pérez, L. A. González, M. Rodríguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367–2368 (2001).
[CrossRef]

Shih, M. Y.

Shishido, A.

Wood, M. V.

Xu, J.

Yatgai, T.

K. Harada, M. Itoh, S. Kotava, A. Naumov, A. Parfenov, T. Yatgai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147–155 (1998).
[CrossRef]

Zhang, G.

Appl. Opt. (4)

Opt. Commun. (1)

J. Gluckstad, “Adaptive array illumination and structured light generated by spatial zero-frequency self-phase modulation in a Kerr medium,” Opt. Commun. 120, 194–203 (1995).
[CrossRef]

Opt. Eng. (1)

M. D. Iturbe Castillo, D. Sánchez-de-la-Llave, R. Ramos García, L. I. Olivos-Pérez, L. A. González, M. Rodríguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367–2368 (2001).
[CrossRef]

Opt. Laser Technol. (2)

H. Rehn, R. Kowarschik, “Real-time non-linear spatial filtering with a leaky OASLM,” Opt. Laser Technol. 30, 39–47 (1998).
[CrossRef]

K. Harada, M. Itoh, S. Kotava, A. Naumov, A. Parfenov, T. Yatgai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147–155 (1998).
[CrossRef]

Opt. Lett. (1)

Other (1)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Fransisco, Calif., 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Single-lens nonlinear common-path interferometer setup: d o , d i , object and image distances of the setup lens, respectively.

Fig. 2
Fig. 2

Qualitative description of the proposed setup: (a) image-processing interpretation, showing the effects of insufficient (top) and excess (bottom) illumination; (b) interferometric interpretation when excess illumination is used.

Fig. 3
Fig. 3

Intensity-dependent phase for the bacteriorhodopsin film used in the phase-contrast experiments.

Fig. 4
Fig. 4

Images of a beam splitter (a) without an IDM with excess illumination, (b) with an IDM (BR) and excess illumination (incident power, 200 nW), (c) with an IDM (BR) but without surrounding illumination.

Fig. 5
Fig. 5

Images of the 0.5° quartz prism (a) without an IDM, (b) with an IDM and a fill factor of 0.5, (c) with an IDM and a fill factor of 0.1.

Fig. 6
Fig. 6

Image of the temperature distribution induced in air by the flame of a lighter when bleached photographic film is used as an IDM.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

fx=rectx+ expiΦ x-1rectxa,
Fv= 1-asinc1-a2 vcosπ2 v1+a+a sincav expiΦx,
Hv1+rectv21+aexpiα|cv|2-1,
oxfx+ 21+asinc2x1+a  expiα|cv|2-1  rectx - rectxa.

Metrics