Abstract

A symmetry X system that has been constructed for the absolute measurements of reflectance and transmittance of specular samples in the infrared region is described. The system has been designed so that it can be incorporated into commercial Fourier-transform infrared spectrometers. Although ten mirrors were used in this system, it is disclosed that the geometric mean of two reflectance values is independent of the reflectance difference of the individual mirrors and the optical loss at each mirror. This system achieves spectral measurements with high accuracy and within a short period of time. In particular, the system affords us the self-diagnostic ability for measured spectra, and the simultaneous measurements of reflectance and transmittance under the same geometry enable us to evaluate measurement uncertainties. Although the symmetry X system is used for infrared spectral measurements, the measurement method, design principles, and features are generally applicable to other wavelengths as well.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kawate, A. Onae, K. Isida, T. Tamegai, Y. Miki, M. Okaji, “Far-infrared absorption by bulk high-Tc superconductors using an optically pumped CH3OH laser,” Phys. Rev. B 43, 12976–12979 (1991).
    [CrossRef]
  2. E. Kawate, T. Itou, Y. Oohasi, A. M. Moe, K. Oka, M. Okaji, “Surface impedance of high-Tc superconductors in the far-infrared region,” Physica C 235–240, 1989–1990 (1994).
    [CrossRef]
  3. E. Kawate, M. Koguchi, Z. Wang, Y. Uzawa, K. Isida, “Comparison of AC laser calorimeter measurements with FTIR measurements of superconductors,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 30–41 (2000).
    [CrossRef]
  4. D. M. Ginsberg, Physical Properties of High Temperature Superconductors III (World Scientific, Singapore, 1992).
    [CrossRef]
  5. A. W. Springsteen, “Reflectance spectroscopy: an overview of classification and techniques,” in Applied Spectroscopy: A Compact Reference for Practitioners, A. W. Springsteen, J. Workman, eds. (Academic, New York, 1998), pp. 193–224.
  6. J. M. Palmer, “The measurement of transmission, absorption, emission, and reflection,” in Handbook of Optics (American Institute of Physics, New York, 1997), Vol. 2, Chap. 25, pp. 25.1–25.25.
  7. L. M. Hanssen, “Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples,” Appl. Opt. 40, 3196–3204 (2001).
    [CrossRef]
  8. K. A. Snail, A. A. Morrish, L. M. Hanssen, “Absolute specular reflectance measurements in the infrared,” in Materials and Optics for Solar Energy Convention and Advanced Lighting Technology, S. Holly, C. M. Lampert, eds., Proc. SPIE692, 143–150 (1986).
    [CrossRef]
  9. T. M. Wang, K. L. Eckerie, J. J. Hsia, “Absolute specular reflectometer with an autocollimator telescope and auxiliary mirrors,” NIST Tech. Note 1280 (National Institute of Standards and Technology, Gaithersburg, MD., 1990).
  10. F. J. J. Clarke, “Infrared regular reflectance standards from NPL,” in Developments in Optical Coating, I. Ried, ed., Proc. SPIE2776, 184–195 (1996).
    [CrossRef]
  11. D. Sheffer, U. P. Oppenheim, A. D. Devier, “Absolute reflectometer in the mid-infrared region,” Appl. Opt. 29, 129–132 (1990).
    [CrossRef] [PubMed]
  12. E. O. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).
  13. P. Klocek, Handbook of Infrared Optical Materials (Wiley, New York, 1991).
  14. S. G. Kaplan, L. M. Hanssen, R. U. Datla, “Testing the radiometric accuracy of Fourier transform transmittance measurements,” Appl. Opt. 36, 8896–8908 (1997).
    [CrossRef]

2001 (1)

1997 (1)

1994 (1)

E. Kawate, T. Itou, Y. Oohasi, A. M. Moe, K. Oka, M. Okaji, “Surface impedance of high-Tc superconductors in the far-infrared region,” Physica C 235–240, 1989–1990 (1994).
[CrossRef]

1991 (1)

E. Kawate, A. Onae, K. Isida, T. Tamegai, Y. Miki, M. Okaji, “Far-infrared absorption by bulk high-Tc superconductors using an optically pumped CH3OH laser,” Phys. Rev. B 43, 12976–12979 (1991).
[CrossRef]

1990 (1)

Clarke, F. J. J.

F. J. J. Clarke, “Infrared regular reflectance standards from NPL,” in Developments in Optical Coating, I. Ried, ed., Proc. SPIE2776, 184–195 (1996).
[CrossRef]

Datla, R. U.

Devier, A. D.

Eckerie, K. L.

T. M. Wang, K. L. Eckerie, J. J. Hsia, “Absolute specular reflectometer with an autocollimator telescope and auxiliary mirrors,” NIST Tech. Note 1280 (National Institute of Standards and Technology, Gaithersburg, MD., 1990).

Ginsberg, D. M.

D. M. Ginsberg, Physical Properties of High Temperature Superconductors III (World Scientific, Singapore, 1992).
[CrossRef]

Hanssen, L. M.

L. M. Hanssen, “Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples,” Appl. Opt. 40, 3196–3204 (2001).
[CrossRef]

S. G. Kaplan, L. M. Hanssen, R. U. Datla, “Testing the radiometric accuracy of Fourier transform transmittance measurements,” Appl. Opt. 36, 8896–8908 (1997).
[CrossRef]

K. A. Snail, A. A. Morrish, L. M. Hanssen, “Absolute specular reflectance measurements in the infrared,” in Materials and Optics for Solar Energy Convention and Advanced Lighting Technology, S. Holly, C. M. Lampert, eds., Proc. SPIE692, 143–150 (1986).
[CrossRef]

Hsia, J. J.

T. M. Wang, K. L. Eckerie, J. J. Hsia, “Absolute specular reflectometer with an autocollimator telescope and auxiliary mirrors,” NIST Tech. Note 1280 (National Institute of Standards and Technology, Gaithersburg, MD., 1990).

Isida, K.

E. Kawate, A. Onae, K. Isida, T. Tamegai, Y. Miki, M. Okaji, “Far-infrared absorption by bulk high-Tc superconductors using an optically pumped CH3OH laser,” Phys. Rev. B 43, 12976–12979 (1991).
[CrossRef]

E. Kawate, M. Koguchi, Z. Wang, Y. Uzawa, K. Isida, “Comparison of AC laser calorimeter measurements with FTIR measurements of superconductors,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 30–41 (2000).
[CrossRef]

Itou, T.

E. Kawate, T. Itou, Y. Oohasi, A. M. Moe, K. Oka, M. Okaji, “Surface impedance of high-Tc superconductors in the far-infrared region,” Physica C 235–240, 1989–1990 (1994).
[CrossRef]

Kaplan, S. G.

Kawate, E.

E. Kawate, T. Itou, Y. Oohasi, A. M. Moe, K. Oka, M. Okaji, “Surface impedance of high-Tc superconductors in the far-infrared region,” Physica C 235–240, 1989–1990 (1994).
[CrossRef]

E. Kawate, A. Onae, K. Isida, T. Tamegai, Y. Miki, M. Okaji, “Far-infrared absorption by bulk high-Tc superconductors using an optically pumped CH3OH laser,” Phys. Rev. B 43, 12976–12979 (1991).
[CrossRef]

E. Kawate, M. Koguchi, Z. Wang, Y. Uzawa, K. Isida, “Comparison of AC laser calorimeter measurements with FTIR measurements of superconductors,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 30–41 (2000).
[CrossRef]

Klocek, P.

P. Klocek, Handbook of Infrared Optical Materials (Wiley, New York, 1991).

Koguchi, M.

E. Kawate, M. Koguchi, Z. Wang, Y. Uzawa, K. Isida, “Comparison of AC laser calorimeter measurements with FTIR measurements of superconductors,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 30–41 (2000).
[CrossRef]

Miki, Y.

E. Kawate, A. Onae, K. Isida, T. Tamegai, Y. Miki, M. Okaji, “Far-infrared absorption by bulk high-Tc superconductors using an optically pumped CH3OH laser,” Phys. Rev. B 43, 12976–12979 (1991).
[CrossRef]

Moe, A. M.

E. Kawate, T. Itou, Y. Oohasi, A. M. Moe, K. Oka, M. Okaji, “Surface impedance of high-Tc superconductors in the far-infrared region,” Physica C 235–240, 1989–1990 (1994).
[CrossRef]

Morrish, A. A.

K. A. Snail, A. A. Morrish, L. M. Hanssen, “Absolute specular reflectance measurements in the infrared,” in Materials and Optics for Solar Energy Convention and Advanced Lighting Technology, S. Holly, C. M. Lampert, eds., Proc. SPIE692, 143–150 (1986).
[CrossRef]

Oka, K.

E. Kawate, T. Itou, Y. Oohasi, A. M. Moe, K. Oka, M. Okaji, “Surface impedance of high-Tc superconductors in the far-infrared region,” Physica C 235–240, 1989–1990 (1994).
[CrossRef]

Okaji, M.

E. Kawate, T. Itou, Y. Oohasi, A. M. Moe, K. Oka, M. Okaji, “Surface impedance of high-Tc superconductors in the far-infrared region,” Physica C 235–240, 1989–1990 (1994).
[CrossRef]

E. Kawate, A. Onae, K. Isida, T. Tamegai, Y. Miki, M. Okaji, “Far-infrared absorption by bulk high-Tc superconductors using an optically pumped CH3OH laser,” Phys. Rev. B 43, 12976–12979 (1991).
[CrossRef]

Onae, A.

E. Kawate, A. Onae, K. Isida, T. Tamegai, Y. Miki, M. Okaji, “Far-infrared absorption by bulk high-Tc superconductors using an optically pumped CH3OH laser,” Phys. Rev. B 43, 12976–12979 (1991).
[CrossRef]

Oohasi, Y.

E. Kawate, T. Itou, Y. Oohasi, A. M. Moe, K. Oka, M. Okaji, “Surface impedance of high-Tc superconductors in the far-infrared region,” Physica C 235–240, 1989–1990 (1994).
[CrossRef]

Oppenheim, U. P.

Palik, E. O.

E. O. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).

Palmer, J. M.

J. M. Palmer, “The measurement of transmission, absorption, emission, and reflection,” in Handbook of Optics (American Institute of Physics, New York, 1997), Vol. 2, Chap. 25, pp. 25.1–25.25.

Sheffer, D.

Snail, K. A.

K. A. Snail, A. A. Morrish, L. M. Hanssen, “Absolute specular reflectance measurements in the infrared,” in Materials and Optics for Solar Energy Convention and Advanced Lighting Technology, S. Holly, C. M. Lampert, eds., Proc. SPIE692, 143–150 (1986).
[CrossRef]

Springsteen, A. W.

A. W. Springsteen, “Reflectance spectroscopy: an overview of classification and techniques,” in Applied Spectroscopy: A Compact Reference for Practitioners, A. W. Springsteen, J. Workman, eds. (Academic, New York, 1998), pp. 193–224.

Tamegai, T.

E. Kawate, A. Onae, K. Isida, T. Tamegai, Y. Miki, M. Okaji, “Far-infrared absorption by bulk high-Tc superconductors using an optically pumped CH3OH laser,” Phys. Rev. B 43, 12976–12979 (1991).
[CrossRef]

Uzawa, Y.

E. Kawate, M. Koguchi, Z. Wang, Y. Uzawa, K. Isida, “Comparison of AC laser calorimeter measurements with FTIR measurements of superconductors,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 30–41 (2000).
[CrossRef]

Wang, T. M.

T. M. Wang, K. L. Eckerie, J. J. Hsia, “Absolute specular reflectometer with an autocollimator telescope and auxiliary mirrors,” NIST Tech. Note 1280 (National Institute of Standards and Technology, Gaithersburg, MD., 1990).

Wang, Z.

E. Kawate, M. Koguchi, Z. Wang, Y. Uzawa, K. Isida, “Comparison of AC laser calorimeter measurements with FTIR measurements of superconductors,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 30–41 (2000).
[CrossRef]

Appl. Opt. (3)

Phys. Rev. B (1)

E. Kawate, A. Onae, K. Isida, T. Tamegai, Y. Miki, M. Okaji, “Far-infrared absorption by bulk high-Tc superconductors using an optically pumped CH3OH laser,” Phys. Rev. B 43, 12976–12979 (1991).
[CrossRef]

Physica C (1)

E. Kawate, T. Itou, Y. Oohasi, A. M. Moe, K. Oka, M. Okaji, “Surface impedance of high-Tc superconductors in the far-infrared region,” Physica C 235–240, 1989–1990 (1994).
[CrossRef]

Other (9)

E. Kawate, M. Koguchi, Z. Wang, Y. Uzawa, K. Isida, “Comparison of AC laser calorimeter measurements with FTIR measurements of superconductors,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 30–41 (2000).
[CrossRef]

D. M. Ginsberg, Physical Properties of High Temperature Superconductors III (World Scientific, Singapore, 1992).
[CrossRef]

A. W. Springsteen, “Reflectance spectroscopy: an overview of classification and techniques,” in Applied Spectroscopy: A Compact Reference for Practitioners, A. W. Springsteen, J. Workman, eds. (Academic, New York, 1998), pp. 193–224.

J. M. Palmer, “The measurement of transmission, absorption, emission, and reflection,” in Handbook of Optics (American Institute of Physics, New York, 1997), Vol. 2, Chap. 25, pp. 25.1–25.25.

K. A. Snail, A. A. Morrish, L. M. Hanssen, “Absolute specular reflectance measurements in the infrared,” in Materials and Optics for Solar Energy Convention and Advanced Lighting Technology, S. Holly, C. M. Lampert, eds., Proc. SPIE692, 143–150 (1986).
[CrossRef]

T. M. Wang, K. L. Eckerie, J. J. Hsia, “Absolute specular reflectometer with an autocollimator telescope and auxiliary mirrors,” NIST Tech. Note 1280 (National Institute of Standards and Technology, Gaithersburg, MD., 1990).

F. J. J. Clarke, “Infrared regular reflectance standards from NPL,” in Developments in Optical Coating, I. Ried, ed., Proc. SPIE2776, 184–195 (1996).
[CrossRef]

E. O. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).

P. Klocek, Handbook of Infrared Optical Materials (Wiley, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic optical layouts for (a) a symmetry X system incorporated in a sample compartment of (b) a FTIR spectrometer. (I), light source and interferometer compartment; (II), sample compartment; (III), detector compartment; S1, globar source; BS, beam splitter; MM, moving mirror; D1, deuterated triglycine sulfide detector; X and Y, geared motors for interferometer alignment; MX (X = 1 to 7), plane mirror; EMX (X = 1 to 8), elliptical mirror; RMX (X = 1 and 2), rotating mirror; SMX (X = 1 to 4), supplementary mirror; and CMX (X = 1 to 4), concave mirror.

Fig. 2
Fig. 2

Photograph of a symmetry X system in the sample compartment.

Fig. 3
Fig. 3

Schematic optical paths of (a) the usual transmittance measurement, (b) the reflectance measurement by use of the symmetry X system, and (c) the transmittance measurement by use of the symmetry X system. Solid lines sample measurements; dashed lines, background measurements.

Fig. 4
Fig. 4

(a) Transmittances, (b) reflectances, and (c) indirectly measured absorptance of a Si #2 sample. These measured spectra are shown by solid curves, and the values calculated from complex indices of refraction are shown by circles.

Fig. 5
Fig. 5

Indirectly measured absorptance (solid curve) and calculated absorptance (circles) in the nonabsorbing region.

Fig. 6
Fig. 6

Relation between the MSR deviation of the absorptance in the nonabsorbing region and the intensity of the interferogram for the RBB mirror configuration in the 400–5000-cm-1 wave numbers. Arabic numerals in the parenthesis represent the order of the measurements.

Fig. 7
Fig. 7

Deviation of each absorptance spectrum shown in Fig. 6 from the minimum absorptance spectrum of the 11th measurement in Fig. 6 in (a) the 500–1000-cm-1 wave-number region and (b) the 2000–5000-cm-1 wave-number region. The solid curve represents (10)–(11); solid curves with squares, circles, triangles, inverse triangles, and diamonds represent (8)–(11), (5)–(11), (4)–(11), (3)–(11), and (1)–(11), respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I0=PinRRM1RSM2RCM1L1F×RCM4RSM3RRM2L2BR2,
I0=PinRRM1RSM1RCM2L1BRCM3×RSM4RRM2L2FR2.
Ir=PinRRM1RSM2RCM1L1FRSRCM3×RSM4RRM2L2FR2.
Ir=PinRRM1RSM1RCM2L1BRSRCM4×RSM3RRM2L2BR2.
IfI0I0 =PinRRM1RRM2R2×RCM1RCM2RCM3RCM4RSM1×RSM2RSM3RSM41/2×L1FL1BL2FL2B1/2.
RFFIrIf=RS×RCM1RCM3RSM2RSM4L1FL2FRCM2RCM4RSM1RSM3L1BL2B1/2.
RBBIrIf=RS×RCM2RCM4RSM1RSM3L1BL2BRCM1RCM3RSM2RSM4L1FL2F1/2.
RS=RFFRBB=IrI0IrI01/2.
It=PinRRM1RSM2RCM1L1FTSRCM4×RSM3RRM2L2BR2.
It=PinRRM1RSM1RCM2L1BTSRCM3×RSM4RRM2L2FR2.
TFBItI0=TS,
TBFItI0=TS.

Metrics