Abstract

The polarization-dependent transmission of light through an electrically controllable in-line-type polarizer that is made from polymer-dispersed liquid-crystal spliced optical fibers is discussed experimentally and theoretically. This in-line-type optical splicing method has the advantage of low transmission loss when it is applied in optical fiber communication systems. An anomalous diffraction approach is used to compute the scattering cross section of polymer-dispersed liquid-crystal droplets. The experimental results are supported by a theoretical analysis. This device can be employed in electrically controllable in-line-type polarizers and has the potential to yield electrically controllable polarization-dependent loss compensators.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Drzaic, “Polymer dispersed nematic liquid crystals for large area displays and light valves,” J. Appl. Phys. 60, 2142–2148 (1986).
    [CrossRef]
  2. W. Korner, H. Scheller, A. Beck, J. Fricke, “PDLC films for control of light transmission,” J. Phys. D 27, 2145–2151 (1994).
    [CrossRef]
  3. H. G. Craighead, J. Cheng, S. Hackwood, “New display based on electrically induced index-matching in an inhomogeneous medium,” Appl. Phys. Lett. 40, 22–24 (1983).
    [CrossRef]
  4. J. B. Whitehead, S. Z̆umer, J. W. Doane, “Light scattering from a dispersion of aligned nematic droplets,” J. Appl. Phys. 73, 1057–1065 (1993).
    [CrossRef]
  5. B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
    [CrossRef]
  6. F. Bloisi, P. Terrecuso, L. Vicari, “Polarized light scattering in a novel polymer dispersed liquid-crystal geometry,” J. Opt. Soc. Am. A 14, 662–668 (1997).
    [CrossRef]
  7. I.-C. Khoo, Liquid Crystals (Wiley, New York, 1994).
  8. S. Z̆umer, “Light scattering from nematic droplets: anomalous-diffraction approach,” Phys. Rev. A 37, 4006–4015 (1988).
    [CrossRef] [PubMed]
  9. J. R. Kelly, P. Palffy-Muhoray, “The optical response of polymer dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. 243, 11–29 (1994).
    [CrossRef]
  10. G. P. Montgomery, “Angle-dependent scattering of polarized light by polymer-dispersed liquid-crystal films,” J. Opt. Soc. Am. B 5, 774–784 (1988).
    [CrossRef]
  11. F. Basile, F. Bloisi, L. Vicari, F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
    [CrossRef]
  12. L. Vicari, “Electro-optic phase modulation by polymer dispersed liquid crystals,” J. Appl. Phys. 81, 6612–6615 (1997).
    [CrossRef]
  13. L. Vicari, “Reorientation gratings in polymer dispersed liquid crystals,” Phys. Rev. E 58, 3280–3283 (1998).
    [CrossRef]
  14. Y. Jeong, H.-R. Kim, S. Baek, Y. Kim, Y. W. Lee, S.-D. Lee, B. Lee, “Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,” Opt. Eng. 42, 964–968 (2003).
    [CrossRef]
  15. Y. Jeong, B. Lee, “Theory of electrically controllable long-period gratings built in liquid-crystal fibers,” Opt. Eng. 40, 1227–1233 (2001).
    [CrossRef]
  16. Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12, 519–521 (2000).
    [CrossRef]

2003 (1)

Y. Jeong, H.-R. Kim, S. Baek, Y. Kim, Y. W. Lee, S.-D. Lee, B. Lee, “Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,” Opt. Eng. 42, 964–968 (2003).
[CrossRef]

2001 (1)

Y. Jeong, B. Lee, “Theory of electrically controllable long-period gratings built in liquid-crystal fibers,” Opt. Eng. 40, 1227–1233 (2001).
[CrossRef]

2000 (1)

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12, 519–521 (2000).
[CrossRef]

1998 (1)

L. Vicari, “Reorientation gratings in polymer dispersed liquid crystals,” Phys. Rev. E 58, 3280–3283 (1998).
[CrossRef]

1997 (2)

L. Vicari, “Electro-optic phase modulation by polymer dispersed liquid crystals,” J. Appl. Phys. 81, 6612–6615 (1997).
[CrossRef]

F. Bloisi, P. Terrecuso, L. Vicari, “Polarized light scattering in a novel polymer dispersed liquid-crystal geometry,” J. Opt. Soc. Am. A 14, 662–668 (1997).
[CrossRef]

1994 (2)

J. R. Kelly, P. Palffy-Muhoray, “The optical response of polymer dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. 243, 11–29 (1994).
[CrossRef]

W. Korner, H. Scheller, A. Beck, J. Fricke, “PDLC films for control of light transmission,” J. Phys. D 27, 2145–2151 (1994).
[CrossRef]

1993 (2)

J. B. Whitehead, S. Z̆umer, J. W. Doane, “Light scattering from a dispersion of aligned nematic droplets,” J. Appl. Phys. 73, 1057–1065 (1993).
[CrossRef]

F. Basile, F. Bloisi, L. Vicari, F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
[CrossRef]

1988 (2)

G. P. Montgomery, “Angle-dependent scattering of polarized light by polymer-dispersed liquid-crystal films,” J. Opt. Soc. Am. B 5, 774–784 (1988).
[CrossRef]

S. Z̆umer, “Light scattering from nematic droplets: anomalous-diffraction approach,” Phys. Rev. A 37, 4006–4015 (1988).
[CrossRef] [PubMed]

1987 (1)

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

1986 (1)

P. S. Drzaic, “Polymer dispersed nematic liquid crystals for large area displays and light valves,” J. Appl. Phys. 60, 2142–2148 (1986).
[CrossRef]

1983 (1)

H. G. Craighead, J. Cheng, S. Hackwood, “New display based on electrically induced index-matching in an inhomogeneous medium,” Appl. Phys. Lett. 40, 22–24 (1983).
[CrossRef]

Baek, S.

Y. Jeong, H.-R. Kim, S. Baek, Y. Kim, Y. W. Lee, S.-D. Lee, B. Lee, “Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,” Opt. Eng. 42, 964–968 (2003).
[CrossRef]

Basile, F.

F. Basile, F. Bloisi, L. Vicari, F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
[CrossRef]

Beck, A.

W. Korner, H. Scheller, A. Beck, J. Fricke, “PDLC films for control of light transmission,” J. Phys. D 27, 2145–2151 (1994).
[CrossRef]

Bloisi, F.

F. Bloisi, P. Terrecuso, L. Vicari, “Polarized light scattering in a novel polymer dispersed liquid-crystal geometry,” J. Opt. Soc. Am. A 14, 662–668 (1997).
[CrossRef]

F. Basile, F. Bloisi, L. Vicari, F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
[CrossRef]

Cheng, J.

H. G. Craighead, J. Cheng, S. Hackwood, “New display based on electrically induced index-matching in an inhomogeneous medium,” Appl. Phys. Lett. 40, 22–24 (1983).
[CrossRef]

Choi, S.

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12, 519–521 (2000).
[CrossRef]

Craighead, H. G.

H. G. Craighead, J. Cheng, S. Hackwood, “New display based on electrically induced index-matching in an inhomogeneous medium,” Appl. Phys. Lett. 40, 22–24 (1983).
[CrossRef]

Doane, J. W.

J. B. Whitehead, S. Z̆umer, J. W. Doane, “Light scattering from a dispersion of aligned nematic droplets,” J. Appl. Phys. 73, 1057–1065 (1993).
[CrossRef]

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

Drzaic, P. S.

P. S. Drzaic, “Polymer dispersed nematic liquid crystals for large area displays and light valves,” J. Appl. Phys. 60, 2142–2148 (1986).
[CrossRef]

Fricke, J.

W. Korner, H. Scheller, A. Beck, J. Fricke, “PDLC films for control of light transmission,” J. Phys. D 27, 2145–2151 (1994).
[CrossRef]

Hackwood, S.

H. G. Craighead, J. Cheng, S. Hackwood, “New display based on electrically induced index-matching in an inhomogeneous medium,” Appl. Phys. Lett. 40, 22–24 (1983).
[CrossRef]

Jeong, Y.

Y. Jeong, H.-R. Kim, S. Baek, Y. Kim, Y. W. Lee, S.-D. Lee, B. Lee, “Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,” Opt. Eng. 42, 964–968 (2003).
[CrossRef]

Y. Jeong, B. Lee, “Theory of electrically controllable long-period gratings built in liquid-crystal fibers,” Opt. Eng. 40, 1227–1233 (2001).
[CrossRef]

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12, 519–521 (2000).
[CrossRef]

Kelly, J. R.

J. R. Kelly, P. Palffy-Muhoray, “The optical response of polymer dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. 243, 11–29 (1994).
[CrossRef]

Khoo, I.-C.

I.-C. Khoo, Liquid Crystals (Wiley, New York, 1994).

Kim, H.-R.

Y. Jeong, H.-R. Kim, S. Baek, Y. Kim, Y. W. Lee, S.-D. Lee, B. Lee, “Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,” Opt. Eng. 42, 964–968 (2003).
[CrossRef]

Kim, Y.

Y. Jeong, H.-R. Kim, S. Baek, Y. Kim, Y. W. Lee, S.-D. Lee, B. Lee, “Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,” Opt. Eng. 42, 964–968 (2003).
[CrossRef]

Korner, W.

W. Korner, H. Scheller, A. Beck, J. Fricke, “PDLC films for control of light transmission,” J. Phys. D 27, 2145–2151 (1994).
[CrossRef]

Lee, B.

Y. Jeong, H.-R. Kim, S. Baek, Y. Kim, Y. W. Lee, S.-D. Lee, B. Lee, “Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,” Opt. Eng. 42, 964–968 (2003).
[CrossRef]

Y. Jeong, B. Lee, “Theory of electrically controllable long-period gratings built in liquid-crystal fibers,” Opt. Eng. 40, 1227–1233 (2001).
[CrossRef]

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12, 519–521 (2000).
[CrossRef]

Lee, S.-D.

Y. Jeong, H.-R. Kim, S. Baek, Y. Kim, Y. W. Lee, S.-D. Lee, B. Lee, “Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,” Opt. Eng. 42, 964–968 (2003).
[CrossRef]

Lee, Y. W.

Y. Jeong, H.-R. Kim, S. Baek, Y. Kim, Y. W. Lee, S.-D. Lee, B. Lee, “Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,” Opt. Eng. 42, 964–968 (2003).
[CrossRef]

Montgomery, G. P.

Oh, K.

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12, 519–521 (2000).
[CrossRef]

Palffy-Muhoray, P.

J. R. Kelly, P. Palffy-Muhoray, “The optical response of polymer dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. 243, 11–29 (1994).
[CrossRef]

Scheller, H.

W. Korner, H. Scheller, A. Beck, J. Fricke, “PDLC films for control of light transmission,” J. Phys. D 27, 2145–2151 (1994).
[CrossRef]

Seo, H. S.

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12, 519–521 (2000).
[CrossRef]

Simoni, F.

F. Basile, F. Bloisi, L. Vicari, F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
[CrossRef]

Terrecuso, P.

Vicari, L.

L. Vicari, “Reorientation gratings in polymer dispersed liquid crystals,” Phys. Rev. E 58, 3280–3283 (1998).
[CrossRef]

F. Bloisi, P. Terrecuso, L. Vicari, “Polarized light scattering in a novel polymer dispersed liquid-crystal geometry,” J. Opt. Soc. Am. A 14, 662–668 (1997).
[CrossRef]

L. Vicari, “Electro-optic phase modulation by polymer dispersed liquid crystals,” J. Appl. Phys. 81, 6612–6615 (1997).
[CrossRef]

F. Basile, F. Bloisi, L. Vicari, F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
[CrossRef]

West, J. L.

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

Whitehead, J. B.

J. B. Whitehead, S. Z̆umer, J. W. Doane, “Light scattering from a dispersion of aligned nematic droplets,” J. Appl. Phys. 73, 1057–1065 (1993).
[CrossRef]

Wu, B.-G.

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

Yang, B.

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12, 519–521 (2000).
[CrossRef]

Z?umer, S.

J. B. Whitehead, S. Z̆umer, J. W. Doane, “Light scattering from a dispersion of aligned nematic droplets,” J. Appl. Phys. 73, 1057–1065 (1993).
[CrossRef]

S. Z̆umer, “Light scattering from nematic droplets: anomalous-diffraction approach,” Phys. Rev. A 37, 4006–4015 (1988).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. G. Craighead, J. Cheng, S. Hackwood, “New display based on electrically induced index-matching in an inhomogeneous medium,” Appl. Phys. Lett. 40, 22–24 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12, 519–521 (2000).
[CrossRef]

J. Appl. Phys. (4)

L. Vicari, “Electro-optic phase modulation by polymer dispersed liquid crystals,” J. Appl. Phys. 81, 6612–6615 (1997).
[CrossRef]

J. B. Whitehead, S. Z̆umer, J. W. Doane, “Light scattering from a dispersion of aligned nematic droplets,” J. Appl. Phys. 73, 1057–1065 (1993).
[CrossRef]

B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

P. S. Drzaic, “Polymer dispersed nematic liquid crystals for large area displays and light valves,” J. Appl. Phys. 60, 2142–2148 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

W. Korner, H. Scheller, A. Beck, J. Fricke, “PDLC films for control of light transmission,” J. Phys. D 27, 2145–2151 (1994).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

J. R. Kelly, P. Palffy-Muhoray, “The optical response of polymer dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. 243, 11–29 (1994).
[CrossRef]

Opt. Eng. (2)

Y. Jeong, H.-R. Kim, S. Baek, Y. Kim, Y. W. Lee, S.-D. Lee, B. Lee, “Polarization-isolated electrical modulation of an etched long-period fiber grating with an outer liquid-crystal cladding,” Opt. Eng. 42, 964–968 (2003).
[CrossRef]

Y. Jeong, B. Lee, “Theory of electrically controllable long-period gratings built in liquid-crystal fibers,” Opt. Eng. 40, 1227–1233 (2001).
[CrossRef]

Phys. Rev. A (1)

S. Z̆umer, “Light scattering from nematic droplets: anomalous-diffraction approach,” Phys. Rev. A 37, 4006–4015 (1988).
[CrossRef] [PubMed]

Phys. Rev. E (2)

F. Basile, F. Bloisi, L. Vicari, F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
[CrossRef]

L. Vicari, “Reorientation gratings in polymer dispersed liquid crystals,” Phys. Rev. E 58, 3280–3283 (1998).
[CrossRef]

Other (1)

I.-C. Khoo, Liquid Crystals (Wiley, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of in-line-type PDLC spliced optical fibers. PDLCs, which are placed between optical fibers, are randomly oriented initially. An external electric field is applied by means of a low-frequency voltage source and metallic electrodes.

Fig. 2
Fig. 2

Frame of reference. The direction of a wave vector is along the x axis, which is orthogonal to the polarization plane of incident light. The direction of an external field is the z axis, and the polarized optical field is either parallel or orthogonal to the external field.

Fig. 3
Fig. 3

Schematic diagram of the experimental setup for measurement of transmission of light. Detecting polarization-dependent characteristics requires use of a polarizer, with which the polarization state of the incident light is selected. But the polarizer is removed for detection of transmission of unpolarized light. An EDFA is used as an unpolarized broadband source, and an optical spectrum analyzer is used for detection. An external electric field is applied by means of a low-frequency voltage source and metallic electrodes. The fibers are aligned by use of a glass tube for maximum coupling efficiency.

Fig. 4
Fig. 4

Normalized transmitted power relative to UV curing time. Before UV curing, the PDLC is transparent to light from the EDFA, but the PDLC becomes opaque through UV curing.

Fig. 5
Fig. 5

Variation in transmission of unpolarized incident light with applied voltage. Theoretical (from Subsection 2.A.) and experimental results are shown. The ensemble average of ordinary and extraordinary (O-E) polarized incident light determined by the analysis described in Subsections 2.B and 2.C is also shown.

Fig. 6
Fig. 6

Variation of transmission of the polarized incident light with applied voltage. The squares represent experimental data, and the curves represent theoretical results.

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

I=I0 exp-Ndσt,
γd=cos-1sin θ cos ϕ.
σd=12 σ02kR2nde*np-12 cos2 αd+ndo*np-12 sin2 αd,
ndo*=ndo,
nde*=cos2 γdndo2+sin2γdnde2-1/2.
nde*ndo+nde-ndosin2 γd,
σd=½ σ02kR2Ce2 cos2 αd+Co2 sin2 αd,
Ce=nde-nde-ndocos2 γdnp-1,
Co=ndonp-1.
ndo=2π noFπ2, 1ne23ne2-no21-Sd1/2,
nde=nonene2-13ne2-no21+2Sd1/2,
Sd=1-1-Sd0exp-Eext/Ed,
αdunp=cos-1sin θ sin ϕ+cos θ2sin γd,
σdunp=12 σ02kR2Ce2 cos2 αdunp+Co2 sin2 αdunp.
σdunpϕ=12π02π σdunpdϕ.
σdunpϕ=12 σ02kR21np2316cos4 θ+18cos2 θ+3162nde2+316cos4 θ-38cos2 θ+1116ndo2+np2-38cos4 θ-14cos2 θ-18ndendo-121+cos2 θndenp-123-cos2 θndonp.
σdunpϕ=12 σ02kR2Counp+C2unpP2cos θ+C4unpP4cos θ,
C0unp=95336 nde2+69112 ndo2+np2-23 ndenp-43 ndonp+5168 ndendonp2,
C2unp=Δnd4nde+3ndo-7np21np2,
C4unp=3Δnd270np2,
Δnd=nde-ndo.
σtunp=12 σ02kR2C0unp+C2unpP2cos θθ+C4unpP4cos θθ.
P2cos θθ=SD,
P4cos θθ=712+512 SD-3532er23+er2-124er2-er2+12er2-18er3tan-12erer2-1,
SD=14+3er2+116er2+33er2+1er2-132er3lner+1er-1,
er=Eext3εpνLCεLC+2εp-νLCεLC-εpε-εK1/2,
εLC=ε+131+2SdSDε-ε,
σdo=12 σ02kR2Ce2 cos2 αdo+Co2 sin2 αdo,
αdo=sin-1cos θsin γd.
σto=12 σ02kR2C0o+C2oP2cos θθ+C4oP4cos θθ,
C0o=4nde2+9ndo2+15np2-10ndenp-20ndonp+2ndendo15np2,
C2o=-Δnd5nde+9ndo-14np21np2,
C4o=-Δnd235np2,
αde=cos-1cos θsin γd,
σte=12 σ02kR2C0e+C2eP2cos θθ+C4eP4cos θθ,
C0e=4nde2+9ndo2+15np2-10ndenp-20ndonp+2ndendo15np2,
C2e=Δnd13nde+15ndo-28np21np2,
C4o=4Δnd235np2.

Metrics