Abstract

The self-consistent microphysical approach applied recently to the transfer of polarized radiation inside a volume of anisotropic discrete random medium is extended to the case of an external observation point. Specifically, it is demonstrated that the solution of the vector radiative transfer equation yields all quantities necessary to calculate the response of an external collimated detector of polarized radiation as a function of the detector orientation and position relative to the scattering volume.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Mishchenko, “Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics,” Appl. Opt. 41, 7114–7134 (2002).
    [CrossRef] [PubMed]
  2. L. A. Apresyan, Yu. A. Kravtsov, Radiation Transfer: Statistical and Wave Aspects (Gordon and Breach, Basel, Switzerland, 1996).

2002 (1)

Apresyan, L. A.

L. A. Apresyan, Yu. A. Kravtsov, Radiation Transfer: Statistical and Wave Aspects (Gordon and Breach, Basel, Switzerland, 1996).

Kravtsov, Yu. A.

L. A. Apresyan, Yu. A. Kravtsov, Radiation Transfer: Statistical and Wave Aspects (Gordon and Breach, Basel, Switzerland, 1996).

Mishchenko, M. I.

Appl. Opt. (1)

Other (1)

L. A. Apresyan, Yu. A. Kravtsov, Radiation Transfer: Statistical and Wave Aspects (Gordon and Breach, Basel, Switzerland, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Coherent field at external observation points.

Fig. 2
Fig. 2

Coherency dyad at an external observation point.

Fig. 3
Fig. 3

Polarized signal measured by an external collimated detector depends on the detector position and orientation with respect to the scattering volume.

Fig. 4
Fig. 4

First-order scattering by a small volume element.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Ecexr1=Eincr1,
Ecexr2=Eincr2,
Ecexr3=expi2πn0k1 ΔsAsˆ, sˆ·Eincr3,
Ecexr=Eincrif r is not shadowed by V,expi2πn0k1 ΔsrAsˆ, sˆ·Eincrif r is shadowed by V,
Icexr=Iincif r is not shadowed by V,exp-n0ΔsrKsˆIincif r is shadowed by V,
Cexr=4πdpˆΣexr, -pˆ,
Σexr, -pˆ=Σcexr, -pˆ+Σdexr, -pˆ.
Σcexr, -pˆ=δpˆ+sˆCcexr,
Ccexr=EcexrEcexr*
Σdexr, -pˆ=n0CC1dp  dξ1η-pˆ, p·A1-pˆ, sˆ·Ccr+p·A1T*-pˆ, sˆ·ηT*-pˆ, p+n02CC1dp  dξ1  dR21dRˆ21dξ2η-pˆ, p·A1-pˆ, -Rˆ21·η-Rˆ21, R21·A2-Rˆ21, sˆ·Ccr+p+R21·A2T*-Rˆ21, sˆ·ηT*-Rˆ21, R21·A1T*-pˆ, -Rˆ21·ηT*-pˆ, p+, pˆΩr,
Σdexr, -pˆ=Oif pˆΩr,ΣdrCr, pˆ, -pˆif pˆΩr,
Ĩexr, -pˆ=Ĩcexr, -pˆ+Ĩdexr, -pˆ,
Ĩcexr, -pˆ=δpˆ+sˆIcexr
Ĩdexr, -pˆ=0if pˆΩr,ĨdrCr, pˆ, -pˆif pˆΩr
Signal 1=ΔSIinc.
Signal 2=ΔS 4πdpˆĨdexr2, -pˆ=ΔS ΔΩ2dpˆĨdrCr2, pˆ, -pˆ,
Signal 3=ΔS exp-n0Δsr3KsˆIinc+ΔS ΔΩ3dpˆĨdrCr3, pˆ, -pˆ,
Signal 4=0.
|n0LKqˆpq|1 and |n0LZqˆ, qˆpq|1
ĨdQ, qˆ=n00QdqHqˆ, Q-qZqˆ, sˆIcq+n00Qdq 4πdqˆHqˆ, Q-q×Zqˆ, qˆĨdq, qˆ,
Signal 1=ΔSIinc-NKsˆIinc+1r2 ΔSNZsˆ, sˆIinc,
Signal 2=1r2 ΔSNZqˆ, sˆIinc,

Metrics