Abstract

Terrestrial optical wireless communication (OWC) is emerging as a promising technology, which makes connectivity possible between high-rise buildings and metropolitan and intercity communication infrastructures. A light beam carries the information, which facilitates extremely high data rates. However, strict alignment between the transmitter and the receiver must be maintained at all times, and a pointing error can result in a total severance of the communication link. In addition, the presence of fog and haze in the propagation channel hampers OWC as the small water droplets scatter the propagating light. This causes attenuation due to the resultant spatial, angular, and temporal spread of the light signal. Furthermore, the ensuing low visibility may impede the operation of the tracking and pointing system so that pointing errors occur. We develop a model of light transmission through fogs of different optical densities and types using Monte Carlo simulations. Based on this model, the performance of OWC in fogs is evaluated at different wavelengths. The handicap of a transceiver pointing error is added to the model, and the paradoxically advantageous aspects of the transmission medium are exposed. The concept of a variable field of view receiver for narrow-beam OWC is studied, and the possibility of thus enhancing communication system performance through fog in an inexpensive and simple way is indicated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Kedar, S. Arnon, “Adaptive field-of-view receiver design for optical wireless communication through fog,” in Free Space Laser Communication and Laser Imaging II, J. C. Ricklin, D. G. Voelz, eds., Proc. SPIE4821, 110–120 (2002).
  2. G. C. Mooradian, L. B. Geller, L. B. Stoots, D. H. Stephens, R. A. Krautwald, “Blue-green pulsed propagation through fog,” Appl. Opt. 18, 429–441 (1979).
    [CrossRef] [PubMed]
  3. G. C. Mooradian, L. B. Geller, “Temporal and angular spreading of blue-green pulses in clouds,” Appl. Opt. 21, 1572–1577 (1982).
    [CrossRef] [PubMed]
  4. R. A. Elliot, “Multiple scattering of optical pulses in scale model clouds,” Appl. Opt. 22, 2670–2681 (1983).
    [CrossRef]
  5. D. G. Collins, M. B. Wells, “Monte Carlo codes for the study of light transport in the atmosphere,” (Radiation Research Associates, Fort Worth, Texas, 1965).
  6. B. C. Thompson, M. B. Wells, “Scattered and reflected light intensities above the atmosphere,” Appl. Opt. 10, 1539–1549 (1971).
    [CrossRef] [PubMed]
  7. D. G. Collins, W. G. Blättner, M. B. Wells, H. G. Horak, “Backward Monte Carlo calculations of the polarisation characteristics of the radiation emerging from spherical-shell atmospheres,” Appl. Opt. 11, 2984–2696 (1972).
    [CrossRef]
  8. W. G. Blättner, H. G. Horak, D. G. Collins, M. B. Wells, “Monte Carlo studies of the sky radiation at twilight,” Appl. Opt. 13, 534–547 (1974).
    [CrossRef] [PubMed]
  9. G. N. Plass, G. W. Kattawar, “Monte Carlo calculations of light scattering from clouds,” Appl. Opt. 7, 415–419 (1968).
    [CrossRef] [PubMed]
  10. G. N. Plass, G. W. Kattawar, “Radiative transfer in water and ice clouds in the visible and infrared region,” Appl. Opt. 10, 738–748 (1971).
    [CrossRef] [PubMed]
  11. G. N. Plass, G. W. Kattawar, “Radiative transfer in the Earth’s atmosphere-ocean system,” J. Phys. Oceanogr. 2, 139–156 (1972).
    [CrossRef]
  12. H. W. Jentinck, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990).
    [CrossRef]
  13. E. A. Bucher, “Computer simulation of light pulse propagation for communication through thick clouds,” Appl. Opt. 12, 2391–2400 (1973).
    [CrossRef] [PubMed]
  14. E. A. Bucher, R. M. Lerner, “Experiments on light pulse communication and propagation through atmospheric clouds,” Appl. Opt. 12, 2401–2415 (1973).
    [CrossRef] [PubMed]
  15. S. Arnon, D. Sadot, N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to Earth adaptive optical communication,” J. Mod. Opt. 41, 1591–1605 (1994).
    [CrossRef]
  16. S. Arnon, D. Sadot, N. S. Kopeika, “Simple mathematical models for temporal, spatial, angular, and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations,” J. Mod. Opt. 41, 1955–1972 (1994).
    [CrossRef]
  17. S. Arnon, N. S. Kopeika, “Adaptive optical transmitter and receiver for space communication through thin clouds,” Appl. Opt. 36, 1987–1993 (1997).
    [CrossRef] [PubMed]
  18. S. Arnon, S. Rotman, N. S. Kopeika, “Beam width and transmitter power adaptive to tracking system performance for free-space optical communication,” Appl. Opt. 36, 6095–6101 (1997).
    [CrossRef] [PubMed]
  19. S. Arnon, N. S. Kopeika, “Free space optical communication: analysis of spatial widening of optical pulses for propagation through clouds,” Opt. Eng. 34, 512–517 (1995).
    [CrossRef]
  20. S. Arnon, N. S. Kopeika, “Free space optical communication: detector array aperture for optical communication through thin clouds,” Opt. Eng. 34, 518–522 (1995).
    [CrossRef]
  21. S. Arnon, N. S. Kopeika, “Adaptive suboptimum detection of an optical pulse-position-modulation signal with a detection matrix and centroid tracking,” J. Opt. Soc. Am. A 15, 443–448 (1998).
    [CrossRef]
  22. A. Kokhanovsky, Optics of Light Scattering Media: Problems and Solutions (Wiley, New York, 1999).
  23. J. V. Dave, “Subroutines for computing the parameters of the electromagnetic radiation scattered by a sphere,” (IBM Scientific Center, Palo Alto, Calif., 1968).
  24. T. S. Chu, D. C. Hogg, “Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns,” Bell Syst. Tech. J. 47, 723–759 (1968).
    [CrossRef]
  25. R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kreizys, J. D. Mill, L. S. Rothman, E. P. Shettle, F. E. Volz, Handbook of Geophysics and Space Environment, A. S. Jeursa, ed. (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1985), chap. 18.
  26. G. N. Plass, G. W. Kattawar, “Influence of single scattering albedo on reflected and transmitted light from clouds,” Appl. Opt. 7, 361–367 (1968).
    [CrossRef] [PubMed]
  27. N. S. Kopeika, A System Engineering Approach to Imaging (SPIE Optical Engineering Press, Bellingham, Wash., 1998).
  28. E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1977).
  29. A. Yariv, Optical Electronics (Holt, Rinehart, & Winston, New York, 1985).
  30. G. P. Agrawal, Fiber Optic Communication Systems (Wiley, New York, 1997).
  31. X. Zhu, J. M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
    [CrossRef]
  32. R. G. Smith, S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” in Semiconductor Devices for Optical Communications (Springer-Verlag, New York, 1980).
  33. P. Djahani, J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48, 2077–2088 (2000).
    [CrossRef]
  34. R. Ragazzoni, E. Diolaite, “Rayleigh link to overcome fog attenuation,” in Free-Space Laser Communication and Laser Imaging, D. G. Voelz, J. C. Ricklin, eds., Proc. SPIE4489, 113–117 (2001).
    [CrossRef]

2002 (1)

X. Zhu, J. M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

2000 (1)

P. Djahani, J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48, 2077–2088 (2000).
[CrossRef]

1998 (1)

1997 (2)

1995 (2)

S. Arnon, N. S. Kopeika, “Free space optical communication: analysis of spatial widening of optical pulses for propagation through clouds,” Opt. Eng. 34, 512–517 (1995).
[CrossRef]

S. Arnon, N. S. Kopeika, “Free space optical communication: detector array aperture for optical communication through thin clouds,” Opt. Eng. 34, 518–522 (1995).
[CrossRef]

1994 (2)

S. Arnon, D. Sadot, N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to Earth adaptive optical communication,” J. Mod. Opt. 41, 1591–1605 (1994).
[CrossRef]

S. Arnon, D. Sadot, N. S. Kopeika, “Simple mathematical models for temporal, spatial, angular, and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations,” J. Mod. Opt. 41, 1955–1972 (1994).
[CrossRef]

1990 (1)

1983 (1)

1982 (1)

1979 (1)

1974 (1)

1973 (2)

1972 (2)

1971 (2)

1968 (3)

Agrawal, G. P.

G. P. Agrawal, Fiber Optic Communication Systems (Wiley, New York, 1997).

Arnon, S.

S. Arnon, N. S. Kopeika, “Adaptive suboptimum detection of an optical pulse-position-modulation signal with a detection matrix and centroid tracking,” J. Opt. Soc. Am. A 15, 443–448 (1998).
[CrossRef]

S. Arnon, N. S. Kopeika, “Adaptive optical transmitter and receiver for space communication through thin clouds,” Appl. Opt. 36, 1987–1993 (1997).
[CrossRef] [PubMed]

S. Arnon, S. Rotman, N. S. Kopeika, “Beam width and transmitter power adaptive to tracking system performance for free-space optical communication,” Appl. Opt. 36, 6095–6101 (1997).
[CrossRef] [PubMed]

S. Arnon, N. S. Kopeika, “Free space optical communication: analysis of spatial widening of optical pulses for propagation through clouds,” Opt. Eng. 34, 512–517 (1995).
[CrossRef]

S. Arnon, N. S. Kopeika, “Free space optical communication: detector array aperture for optical communication through thin clouds,” Opt. Eng. 34, 518–522 (1995).
[CrossRef]

S. Arnon, D. Sadot, N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to Earth adaptive optical communication,” J. Mod. Opt. 41, 1591–1605 (1994).
[CrossRef]

S. Arnon, D. Sadot, N. S. Kopeika, “Simple mathematical models for temporal, spatial, angular, and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations,” J. Mod. Opt. 41, 1955–1972 (1994).
[CrossRef]

D. Kedar, S. Arnon, “Adaptive field-of-view receiver design for optical wireless communication through fog,” in Free Space Laser Communication and Laser Imaging II, J. C. Ricklin, D. G. Voelz, eds., Proc. SPIE4821, 110–120 (2002).

Blättner, W. G.

Bucher, E. A.

Chu, T. S.

T. S. Chu, D. C. Hogg, “Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns,” Bell Syst. Tech. J. 47, 723–759 (1968).
[CrossRef]

Clough, S. A.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kreizys, J. D. Mill, L. S. Rothman, E. P. Shettle, F. E. Volz, Handbook of Geophysics and Space Environment, A. S. Jeursa, ed. (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1985), chap. 18.

Collins, D. G.

Dave, J. V.

J. V. Dave, “Subroutines for computing the parameters of the electromagnetic radiation scattered by a sphere,” (IBM Scientific Center, Palo Alto, Calif., 1968).

de Mul, F. F. M.

Diolaite, E.

R. Ragazzoni, E. Diolaite, “Rayleigh link to overcome fog attenuation,” in Free-Space Laser Communication and Laser Imaging, D. G. Voelz, J. C. Ricklin, eds., Proc. SPIE4489, 113–117 (2001).
[CrossRef]

Djahani, P.

P. Djahani, J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48, 2077–2088 (2000).
[CrossRef]

Elliot, R. A.

Fenn, R. W.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kreizys, J. D. Mill, L. S. Rothman, E. P. Shettle, F. E. Volz, Handbook of Geophysics and Space Environment, A. S. Jeursa, ed. (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1985), chap. 18.

Gallery, W. O.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kreizys, J. D. Mill, L. S. Rothman, E. P. Shettle, F. E. Volz, Handbook of Geophysics and Space Environment, A. S. Jeursa, ed. (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1985), chap. 18.

Geller, L. B.

Good, R. E.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kreizys, J. D. Mill, L. S. Rothman, E. P. Shettle, F. E. Volz, Handbook of Geophysics and Space Environment, A. S. Jeursa, ed. (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1985), chap. 18.

Graff, R.

Greve, J.

Hermsen, R. G. A. M.

Hogg, D. C.

T. S. Chu, D. C. Hogg, “Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns,” Bell Syst. Tech. J. 47, 723–759 (1968).
[CrossRef]

Horak, H. G.

Jentinck, H. W.

Kahn, J. M.

X. Zhu, J. M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

P. Djahani, J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48, 2077–2088 (2000).
[CrossRef]

Kattawar, G. W.

Kedar, D.

D. Kedar, S. Arnon, “Adaptive field-of-view receiver design for optical wireless communication through fog,” in Free Space Laser Communication and Laser Imaging II, J. C. Ricklin, D. G. Voelz, eds., Proc. SPIE4821, 110–120 (2002).

Kokhanovsky, A.

A. Kokhanovsky, Optics of Light Scattering Media: Problems and Solutions (Wiley, New York, 1999).

Kopeika, N. S.

S. Arnon, N. S. Kopeika, “Adaptive suboptimum detection of an optical pulse-position-modulation signal with a detection matrix and centroid tracking,” J. Opt. Soc. Am. A 15, 443–448 (1998).
[CrossRef]

S. Arnon, S. Rotman, N. S. Kopeika, “Beam width and transmitter power adaptive to tracking system performance for free-space optical communication,” Appl. Opt. 36, 6095–6101 (1997).
[CrossRef] [PubMed]

S. Arnon, N. S. Kopeika, “Adaptive optical transmitter and receiver for space communication through thin clouds,” Appl. Opt. 36, 1987–1993 (1997).
[CrossRef] [PubMed]

S. Arnon, N. S. Kopeika, “Free space optical communication: analysis of spatial widening of optical pulses for propagation through clouds,” Opt. Eng. 34, 512–517 (1995).
[CrossRef]

S. Arnon, N. S. Kopeika, “Free space optical communication: detector array aperture for optical communication through thin clouds,” Opt. Eng. 34, 518–522 (1995).
[CrossRef]

S. Arnon, D. Sadot, N. S. Kopeika, “Simple mathematical models for temporal, spatial, angular, and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations,” J. Mod. Opt. 41, 1955–1972 (1994).
[CrossRef]

S. Arnon, D. Sadot, N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to Earth adaptive optical communication,” J. Mod. Opt. 41, 1591–1605 (1994).
[CrossRef]

N. S. Kopeika, A System Engineering Approach to Imaging (SPIE Optical Engineering Press, Bellingham, Wash., 1998).

Krautwald, R. A.

Kreizys, F. X.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kreizys, J. D. Mill, L. S. Rothman, E. P. Shettle, F. E. Volz, Handbook of Geophysics and Space Environment, A. S. Jeursa, ed. (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1985), chap. 18.

Lerner, R. M.

McCartney, E. J.

E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1977).

Mill, J. D.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kreizys, J. D. Mill, L. S. Rothman, E. P. Shettle, F. E. Volz, Handbook of Geophysics and Space Environment, A. S. Jeursa, ed. (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1985), chap. 18.

Mooradian, G. C.

Personick, S. D.

R. G. Smith, S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” in Semiconductor Devices for Optical Communications (Springer-Verlag, New York, 1980).

Plass, G. N.

Ragazzoni, R.

R. Ragazzoni, E. Diolaite, “Rayleigh link to overcome fog attenuation,” in Free-Space Laser Communication and Laser Imaging, D. G. Voelz, J. C. Ricklin, eds., Proc. SPIE4489, 113–117 (2001).
[CrossRef]

Rothman, L. S.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kreizys, J. D. Mill, L. S. Rothman, E. P. Shettle, F. E. Volz, Handbook of Geophysics and Space Environment, A. S. Jeursa, ed. (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1985), chap. 18.

Rotman, S.

Sadot, D.

S. Arnon, D. Sadot, N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to Earth adaptive optical communication,” J. Mod. Opt. 41, 1591–1605 (1994).
[CrossRef]

S. Arnon, D. Sadot, N. S. Kopeika, “Simple mathematical models for temporal, spatial, angular, and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations,” J. Mod. Opt. 41, 1955–1972 (1994).
[CrossRef]

Shettle, E. P.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kreizys, J. D. Mill, L. S. Rothman, E. P. Shettle, F. E. Volz, Handbook of Geophysics and Space Environment, A. S. Jeursa, ed. (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1985), chap. 18.

Smith, R. G.

R. G. Smith, S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” in Semiconductor Devices for Optical Communications (Springer-Verlag, New York, 1980).

Stephens, D. H.

Stoots, L. B.

Thompson, B. C.

Volz, F. E.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kreizys, J. D. Mill, L. S. Rothman, E. P. Shettle, F. E. Volz, Handbook of Geophysics and Space Environment, A. S. Jeursa, ed. (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1985), chap. 18.

Wells, M. B.

Yariv, A.

A. Yariv, Optical Electronics (Holt, Rinehart, & Winston, New York, 1985).

Zhu, X.

X. Zhu, J. M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

Appl. Opt. (14)

G. C. Mooradian, L. B. Geller, L. B. Stoots, D. H. Stephens, R. A. Krautwald, “Blue-green pulsed propagation through fog,” Appl. Opt. 18, 429–441 (1979).
[CrossRef] [PubMed]

G. C. Mooradian, L. B. Geller, “Temporal and angular spreading of blue-green pulses in clouds,” Appl. Opt. 21, 1572–1577 (1982).
[CrossRef] [PubMed]

R. A. Elliot, “Multiple scattering of optical pulses in scale model clouds,” Appl. Opt. 22, 2670–2681 (1983).
[CrossRef]

B. C. Thompson, M. B. Wells, “Scattered and reflected light intensities above the atmosphere,” Appl. Opt. 10, 1539–1549 (1971).
[CrossRef] [PubMed]

D. G. Collins, W. G. Blättner, M. B. Wells, H. G. Horak, “Backward Monte Carlo calculations of the polarisation characteristics of the radiation emerging from spherical-shell atmospheres,” Appl. Opt. 11, 2984–2696 (1972).
[CrossRef]

W. G. Blättner, H. G. Horak, D. G. Collins, M. B. Wells, “Monte Carlo studies of the sky radiation at twilight,” Appl. Opt. 13, 534–547 (1974).
[CrossRef] [PubMed]

G. N. Plass, G. W. Kattawar, “Monte Carlo calculations of light scattering from clouds,” Appl. Opt. 7, 415–419 (1968).
[CrossRef] [PubMed]

G. N. Plass, G. W. Kattawar, “Radiative transfer in water and ice clouds in the visible and infrared region,” Appl. Opt. 10, 738–748 (1971).
[CrossRef] [PubMed]

H. W. Jentinck, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990).
[CrossRef]

E. A. Bucher, “Computer simulation of light pulse propagation for communication through thick clouds,” Appl. Opt. 12, 2391–2400 (1973).
[CrossRef] [PubMed]

E. A. Bucher, R. M. Lerner, “Experiments on light pulse communication and propagation through atmospheric clouds,” Appl. Opt. 12, 2401–2415 (1973).
[CrossRef] [PubMed]

S. Arnon, N. S. Kopeika, “Adaptive optical transmitter and receiver for space communication through thin clouds,” Appl. Opt. 36, 1987–1993 (1997).
[CrossRef] [PubMed]

S. Arnon, S. Rotman, N. S. Kopeika, “Beam width and transmitter power adaptive to tracking system performance for free-space optical communication,” Appl. Opt. 36, 6095–6101 (1997).
[CrossRef] [PubMed]

G. N. Plass, G. W. Kattawar, “Influence of single scattering albedo on reflected and transmitted light from clouds,” Appl. Opt. 7, 361–367 (1968).
[CrossRef] [PubMed]

Bell Syst. Tech. J. (1)

T. S. Chu, D. C. Hogg, “Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns,” Bell Syst. Tech. J. 47, 723–759 (1968).
[CrossRef]

IEEE Trans. Commun. (2)

X. Zhu, J. M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

P. Djahani, J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers,” IEEE Trans. Commun. 48, 2077–2088 (2000).
[CrossRef]

J. Mod. Opt. (2)

S. Arnon, D. Sadot, N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to Earth adaptive optical communication,” J. Mod. Opt. 41, 1591–1605 (1994).
[CrossRef]

S. Arnon, D. Sadot, N. S. Kopeika, “Simple mathematical models for temporal, spatial, angular, and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations,” J. Mod. Opt. 41, 1955–1972 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Oceanogr. (1)

G. N. Plass, G. W. Kattawar, “Radiative transfer in the Earth’s atmosphere-ocean system,” J. Phys. Oceanogr. 2, 139–156 (1972).
[CrossRef]

Opt. Eng. (2)

S. Arnon, N. S. Kopeika, “Free space optical communication: analysis of spatial widening of optical pulses for propagation through clouds,” Opt. Eng. 34, 512–517 (1995).
[CrossRef]

S. Arnon, N. S. Kopeika, “Free space optical communication: detector array aperture for optical communication through thin clouds,” Opt. Eng. 34, 518–522 (1995).
[CrossRef]

Other (11)

D. G. Collins, M. B. Wells, “Monte Carlo codes for the study of light transport in the atmosphere,” (Radiation Research Associates, Fort Worth, Texas, 1965).

A. Kokhanovsky, Optics of Light Scattering Media: Problems and Solutions (Wiley, New York, 1999).

J. V. Dave, “Subroutines for computing the parameters of the electromagnetic radiation scattered by a sphere,” (IBM Scientific Center, Palo Alto, Calif., 1968).

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kreizys, J. D. Mill, L. S. Rothman, E. P. Shettle, F. E. Volz, Handbook of Geophysics and Space Environment, A. S. Jeursa, ed. (Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1985), chap. 18.

N. S. Kopeika, A System Engineering Approach to Imaging (SPIE Optical Engineering Press, Bellingham, Wash., 1998).

E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1977).

A. Yariv, Optical Electronics (Holt, Rinehart, & Winston, New York, 1985).

G. P. Agrawal, Fiber Optic Communication Systems (Wiley, New York, 1997).

R. Ragazzoni, E. Diolaite, “Rayleigh link to overcome fog attenuation,” in Free-Space Laser Communication and Laser Imaging, D. G. Voelz, J. C. Ricklin, eds., Proc. SPIE4489, 113–117 (2001).
[CrossRef]

R. G. Smith, S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” in Semiconductor Devices for Optical Communications (Springer-Verlag, New York, 1980).

D. Kedar, S. Arnon, “Adaptive field-of-view receiver design for optical wireless communication through fog,” in Free Space Laser Communication and Laser Imaging II, J. C. Ricklin, D. G. Voelz, eds., Proc. SPIE4821, 110–120 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic illustration of the communication scenario.

Fig. 2
Fig. 2

Simple block diagram of an optical wireless communication system.

Fig. 3
Fig. 3

Normalized probability distributions of particle radii for light haze, moderate fog, and heavy fog.

Fig. 4
Fig. 4

Mie phase functions for heavy fog at wavelengths (a) 530, (b) 670, (c) 850, and (d) 1550 nm.

Fig. 5
Fig. 5

Schematic illustration of the passage of light through a multiple scattering medium in the presence of pointing error.

Fig. 6
Fig. 6

Ratio of scattered to total received power with zero pointing error at wavelengths 530, 670, 850, and 1550 nm for light propagation through thick fog; FOV 10 mrad, aperture radius 5 cm.

Fig. 7
Fig. 7

Received optical power versus the FOV half angle at four different wavelengths for light propagation through heavy fog. Note the unscattered light reception at zero FOV half angle, the rise in received power at low FOV half angles, which is sharper for shorter wavelengths than for longer, and the plateauing of light reception once the FOV half angle exceeds a wavelength-sensitive value. Transmitted power 1 W, aperture radius 5 cm, optical density (OD) ∼10.

Fig. 8
Fig. 8

Received optical power versus the FOV half angle, normalized to total received power, for transmission through three different fog models. Note the lower proportion of total received light that arrives unscattered (at FOV half angle of zero) for the denser fogs. The sharp increase in received light, as the FOV half angle increases from zero, is most pronounced in the case of the heavy fog. Range 300 m, radiation wavelength 670 nm.

Fig. 9
Fig. 9

SNR versus pointing error for three FOV half angles. As the pointing error increases the SNR falls, maintaining a higher value the larger the FOV half angle. Data for the numerical example are given in the text.

Tables (2)

Tables Icon

Table 1 Salient Data on Fog Profiles23-27

Tables Icon

Table 2 FOV (Milliradians) for Various Fog Models at Various Wavelengths of Radiation for Different Degrees of Power Reception Relative to Total Received Powera

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Φψ=rminrmax prρr, ψdr.
pd=1/Dexp-d/D,
D=1NSScatter,
PRφ, δ, τ, λ, A=δ-φ/2δ+φ/2 Qφ, τ, λ, Adφ,
φ/2rd/f,
Cda=εlp+ln,
B12πRLCd,
σtot22qPBI2B+4kTRL I2B+16π2kTΓgm×Cd+Cg2I3B3,
PB=NRΔλπrd2φ2/4,
Cd=ε4lp+ln πφ2f2,
σtot2Kφ241+ΓgmI3I2φ24+2qI2BNRΔλπf2φ416,
K=8π2I2f2B2kTεlp+ln.
SNR=P¯Rφ2Kφ241+ΓgmI3I2φ24+2qI2BNRΔλπf2φ416.
BER=12erfcPRα22Kφ241+ΓgmI3I2φ24+2qI2BNRΔλπf2φ4161/2,
erfcx=2πxexp-y2dy.

Metrics