Abstract

Laser-induced fluorescence (LIF) has proven a reliable technique for nitric oxide (NO) diagnostics in practical combustion systems. However, a wide variety of different excitation and detection strategies are proposed in the literature without giving clear guidelines of which strategies to use for a particular diagnostic situation. We give a brief review of the high-pressure NO LIF diagnostics literature and compare strategies for exciting selected transitions in the AX(0, 0), (0, 1), and (0, 2) bands using a different detection bandpass. The strategies are compared in terms of NO LIF signal strength, attenuation of laser and signal light in the hot combustion gases, signal selectivity against LIF interference from O2 and CO2, and temperature and pressure sensitivity of the LIF signal. The discussion is based on spectroscopic measurements in laminar premixed methane-air flames at pressures between 1 and 60 bars and on NO and O2 LIF spectral simulations.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).
  2. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
    [CrossRef]
  3. K. Kohse-Höinghaus, J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, New York, 2002).
  4. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
    [CrossRef] [PubMed]
  5. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt. 42, 2031–2042 (2003).
    [CrossRef] [PubMed]
  6. C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced fluorescence detection of nitric oxide in high-pressure flames with A–X(0, 2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
    [CrossRef] [PubMed]
  7. C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
    [CrossRef]
  8. A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
    [CrossRef]
  9. M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NO (0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
    [CrossRef]
  10. M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO (0, 0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
    [CrossRef]
  11. A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0, 0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).
    [CrossRef]
  12. R. Zhang, D. R. Crosley, “Temperature dependent quenching of A 2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
    [CrossRef]
  13. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO A2Σ+ (v′ = 0),” Chem. Phys. Lett. 259, 508–541 (1996).
    [CrossRef]
  14. M. C. Drake, J. W. Ratcliffe, “High temperature quenching cross sections for nitric oxide laser-induced fluorescence measurements,” J. Chem. Phys. 98, 3850–3865 (1993).
    [CrossRef]
  15. J. W. Thoman, J. A. Gray, J. L. Durant, P. H. Paul, “Collisional electronic quenching of NO A2Σ+ by N2 from 300 to 4500 K,” J. Chem. Phys. 97, 8156–8163 (1992).
    [CrossRef]
  16. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
    [CrossRef]
  17. M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH (A), OH A, and NO (A) in low-pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
    [CrossRef]
  18. P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quencing cross-section,” (Sandia National Laboratories, Livermore, Calif., 1994).
  19. R. S. Barlow, J. H. Frank, “Effects of turbulence on species mass fractions in methane/air jet flames,” Proc. Combust. Inst. 27, 1087–1095 (1998).
    [CrossRef]
  20. F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
    [CrossRef]
  21. C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
    [CrossRef]
  22. W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
    [CrossRef]
  23. C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2743 (2002).
    [CrossRef]
  24. M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF Spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996).
    [CrossRef]
  25. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003).
    [CrossRef]
  26. A. Cialolo, R. Barbella, A. Tregrossi, L. Bonfanti, “Spectroscopic and compositional signatures of PAH-loaded mixtures in the soot inception region of a premixed ethylene flame,” Proc. Combust. Inst. 27, 1481–1487 (1998).
  27. P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
    [CrossRef]
  28. M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence for soot diagnostics at high pressure,” Appl. Opt., 4252052–2062 (2003).
    [CrossRef]
  29. A. M. Wodtke, M. Huwel, H. Schluter, G. Meijer, P. Andresen, H. Voges, “High-sensitivity detection of NO in a flame using a tunable ArF laser,” Opt. Lett. 13, 910–912 (1988).
    [CrossRef] [PubMed]
  30. M. Versluis, M. Ebben, M. Drabbels, J. J. ter Meulen, “Frequency calibration in the ArF excimer laser-tuning range using laser-induced fluorescence of NO,” Appl. Opt. 30, 5229–5234 (1991).
    [CrossRef] [PubMed]
  31. P. Andresen, G. Meijer, H. Schluter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
    [CrossRef] [PubMed]
  32. A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” Proc. Combust. Inst. 24, 1605–1612 (1992).
    [CrossRef]
  33. A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993).
    [CrossRef]
  34. T. M. Brugmann, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and Diesel-fuel-driven Diesel engine,” Appl. Phys. B 57, 405–410 (1993).
    [CrossRef]
  35. T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. t. Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
    [CrossRef]
  36. N. Dam, W. L. Meerts, J. J. ter Meulen, “Laser diagnostics of nitric oxide inside a two-stroke DI Diesel engine,” in Laser Techniques Applied to Fluid Mechanics: Selected Papers from the Ninth International Symposium, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (Springer-Verlag, New York, 2000), chap. 7.
    [CrossRef]
  37. G. G. M. Stoffels, E.-J. van den Boom, C. M. I. Spaanjaars, N. Dam, W. L. Meerts, J. J. ter Meulen, J. L. C. Duff, D. J. Rickeard, “In-cylinder measurements of NO formation in a Disel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1999).
  38. T. Tanaka, M. Fujimoto, M. Tabata, “Planar measurements of NO in an S.I. engine based on laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).
  39. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
    [CrossRef] [PubMed]
  40. J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
    [CrossRef]
  41. D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Modeling of NO formation in premixed, high-pressure methane flames,” Combust. Flame 119, 307–318 (1999).
    [CrossRef]
  42. J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1998).
  43. B. Alatas, J. A. Pinson, T. A. Litzinger, D. A. Santavicca, “A study of NO and soot evolution in a DI Diesel engine via planar imaging,” (Society of Automotive Engineers, Warrendale, Pa., 1993).
  44. A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” (Society of Automotive Engineers, Warrendale, Pa., 1995).
  45. T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
    [CrossRef]
  46. B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
    [CrossRef]
  47. E.-J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen. “Laser diagnostics in a Diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–600 (2001).
    [CrossRef]
  48. H. Nakagawa, H. Endo, Y. Deguchi, M. Noda, H. Oikawa, T. Shimada, “NO measurement in Diesel spray flame using laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).
  49. M. C. Drake, J. W. Ratcliffe, R. J. Blint, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of flamefront NO formation and superequilibrium radical concentrations in laminar high-pressure premixed flames,” Proc. Combust. Inst. 23, 387–395 (1990).
    [CrossRef]
  50. J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Laser-induced fluorescence measurements of nitric oxide in laminar C2H6/O2/N2 flames at high pressure,” Combust. Flame 92, 485–489 (1993).
    [CrossRef]
  51. J. R. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
    [CrossRef]
  52. J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements of nitric oxide in laminar high-temperature flames,” Energy Fuels 8, 1115–1122 (1994).
    [CrossRef]
  53. J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames,” Combust. Flame 101, 141–152 (1995).
    [CrossRef]
  54. C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames,” Proc. Combust. Inst. 28, 287–293 (2000).
    [CrossRef]
  55. C. S. Cooper, N. M. Laurendeau, “Comparison of laser-induced and planar laser-induced fluorescence measurements of nitric oxide in a high-pressure, swirl-stabilized, spray flame,” Appl. Phys. B 70, 903–910 (2000).
    [CrossRef]
  56. C. S. Cooper, N. M. Laurendeau, “Quantitative measurements of nitric oxide in high-pressure (2–5 atm), swirl-stabilized spray flames via laser-induced fluorescence,” Combust. Flame 123, 175–188 (2000).
    [CrossRef]
  57. D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO+H2+CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
    [CrossRef]
  58. D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997).
    [CrossRef] [PubMed]
  59. W. P. Partridge, N. M. Laurendeau, “Formulation of a dimensionless overlap fraction to account for spectrally distributed interactions in fluorescence studies,” Appl. Opt. 34, 2645–2647 (1995).
    [CrossRef] [PubMed]
  60. J. R. Reisel, W. P. Partridge, N. M. Laurendeau, “Transportability of a laser-induced fluorescence calibration for NO at high pressure,” J. Quant. Spectrosc. Radiat. Transfer 53, 165–178 (1995).
    [CrossRef]
  61. C. S. Cooper, N. M. Laurendeau, “Laser-induced fluorescence measurements in lean direct-injection spray flames: technique development and application,” Meas. Sci. Technol. 11, 902–911 (2000).
    [CrossRef]
  62. W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson. “Quantitative NO-LIF imaging in high-pressure flames,” in First International Conference on Optical and Laser Diagnostics (ICOLAD) (Institute of Physics, London, 2002), pp. 97–102.
  63. A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A-X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B. 61, 409–414 (1995).
    [CrossRef]
  64. P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, “Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A-X(0, 1) excitation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).
  65. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson. “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0, 1) excitation,” in Proceedings of the Western States Section of the Combustion Institute, Spring Meeting (Combustion Institute, Pittsburgh, Pa., 2001).
  66. T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in methane/air flames at pressures between 1 and 60 bar,” paper AIAA-2002-0399, presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 5–8 Jan. 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).
  67. C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
    [CrossRef]
  68. C. Schulz, V. Sick, J. Heinze, W. Stricker, “A new approach to laser-induced fluorescence detection of nitric oxide in high pressure flames,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3. of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 133–135.
  69. F. Hildenbrand, C. Schulz, M. Hartmann, F. Puchner, G. Wawrschin, “In-cylinder NO-LIF imaging in a realistic GDI engine using KrF excimer laser excitation,” (Society of Automotive Engineers, Warrendale, Pa., 1999).
  70. F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. G. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” in VDI Flammentag Dresden, VDI Berichte 1492 (1999), pp. 269–274.
  71. F. Hildenbrand, C. Schulz, V. Sick, E. Wagner, “Spatially resolved investigation of light absorption in an SI engine fueled with propane/air,” Appl. Opt. 38, 1452–1458 (1999).
    [CrossRef]
  72. C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).
    [CrossRef]
  73. W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).
  74. F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” Proc. Combust. Inst. 28, 1137–1144 (2000).
    [CrossRef]
  75. F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” (Society of Automotive Engineers, Warrendale, Pa., 2001).
  76. V. Beushàusen, M. Knapp, A. Luczak, S. Eisenberg, P. Andresen, “Application of laser-induced fluorescence and spontaneous Raman scattering to technically applied combustion systems: four cylinder spark ignition engine and oil burning furnace,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 142–144.
  77. M. Knapp, A. Luczak, H. Schlüter, V. Beushausen, W. Hentschel, P. Andresen, “Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release,” Appl. Opt. 35, 4009–4017 (1996).
    [CrossRef] [PubMed]
  78. M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Quantitative in-cylinder NO LIF measurements with a KrF excimer laser applied to a mass-production SI engine fueled with isooctane and regular gasoline,” (Society of Automotive Engineers, Warrendale, Pa., 1997).
  79. K. Akihama, T. Fujikawa, Y. Hattori, “Laser-induced fluorescence imaging of NO in a port-fuel-injected statified-charge SI engine—correlations between NO formation region and stratified fuel distribution,” (Society of Automotive Engineers, Warrendale, Pa., 1998).
  80. H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz. “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989).
  81. W. G. Bessler, C. Schulz, V. Sick, J. W. Daily. “A versatile modeling tool for nitric oxide LIF spectra,” in the Third Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2003), p. P11–6.
  82. A. V. Mokhov, H. B. Levinsky, C. E. van der Meij, “Temperature dependence of laser-induced fluorescence of nitric oxide in laminar premixed atmospheric-pressure flames,” Appl. Opt. 36, 3233–3243 (1997).
    [CrossRef] [PubMed]
  83. P. H. Paul, “Calculation of transition frequencies and roational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
    [CrossRef]

2003 (3)

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003).
[CrossRef]

M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence for soot diagnostics at high pressure,” Appl. Opt., 4252052–2062 (2003).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt. 42, 2031–2042 (2003).
[CrossRef] [PubMed]

2002 (4)

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2743 (2002).
[CrossRef]

2001 (2)

F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
[CrossRef]

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO+H2+CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

2000 (5)

C. S. Cooper, N. M. Laurendeau, “Laser-induced fluorescence measurements in lean direct-injection spray flames: technique development and application,” Meas. Sci. Technol. 11, 902–911 (2000).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames,” Proc. Combust. Inst. 28, 287–293 (2000).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Comparison of laser-induced and planar laser-induced fluorescence measurements of nitric oxide in a high-pressure, swirl-stabilized, spray flame,” Appl. Phys. B 70, 903–910 (2000).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Quantitative measurements of nitric oxide in high-pressure (2–5 atm), swirl-stabilized spray flames via laser-induced fluorescence,” Combust. Flame 123, 175–188 (2000).
[CrossRef]

1999 (3)

1998 (3)

A. Cialolo, R. Barbella, A. Tregrossi, L. Bonfanti, “Spectroscopic and compositional signatures of PAH-loaded mixtures in the soot inception region of a premixed ethylene flame,” Proc. Combust. Inst. 27, 1481–1487 (1998).

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH (A), OH A, and NO (A) in low-pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

R. S. Barlow, J. H. Frank, “Effects of turbulence on species mass fractions in methane/air jet flames,” Proc. Combust. Inst. 27, 1087–1095 (1998).
[CrossRef]

1997 (5)

1996 (4)

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).
[CrossRef]

M. Knapp, A. Luczak, H. Schlüter, V. Beushausen, W. Hentschel, P. Andresen, “Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release,” Appl. Opt. 35, 4009–4017 (1996).
[CrossRef] [PubMed]

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF Spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO A2Σ+ (v′ = 0),” Chem. Phys. Lett. 259, 508–541 (1996).
[CrossRef]

1995 (10)

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0, 0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).
[CrossRef]

R. Zhang, D. R. Crosley, “Temperature dependent quenching of A 2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
[CrossRef]

P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
[CrossRef]

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames,” Combust. Flame 101, 141–152 (1995).
[CrossRef]

A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A-X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B. 61, 409–414 (1995).
[CrossRef]

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

J. R. Reisel, W. P. Partridge, N. M. Laurendeau, “Transportability of a laser-induced fluorescence calibration for NO at high pressure,” J. Quant. Spectrosc. Radiat. Transfer 53, 165–178 (1995).
[CrossRef]

W. P. Partridge, N. M. Laurendeau, “Formulation of a dimensionless overlap fraction to account for spectrally distributed interactions in fluorescence studies,” Appl. Opt. 34, 2645–2647 (1995).
[CrossRef] [PubMed]

1994 (5)

J. R. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements of nitric oxide in laminar high-temperature flames,” Energy Fuels 8, 1115–1122 (1994).
[CrossRef]

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NO (0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO (0, 0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

1993 (6)

M. C. Drake, J. W. Ratcliffe, “High temperature quenching cross sections for nitric oxide laser-induced fluorescence measurements,” J. Chem. Phys. 98, 3850–3865 (1993).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993).
[CrossRef]

T. M. Brugmann, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and Diesel-fuel-driven Diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Laser-induced fluorescence measurements of nitric oxide in laminar C2H6/O2/N2 flames at high pressure,” Combust. Flame 92, 485–489 (1993).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

1992 (4)

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” Proc. Combust. Inst. 24, 1605–1612 (1992).
[CrossRef]

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

J. W. Thoman, J. A. Gray, J. L. Durant, P. H. Paul, “Collisional electronic quenching of NO A2Σ+ by N2 from 300 to 4500 K,” J. Chem. Phys. 97, 8156–8163 (1992).
[CrossRef]

1991 (1)

1990 (2)

P. Andresen, G. Meijer, H. Schluter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

M. C. Drake, J. W. Ratcliffe, R. J. Blint, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of flamefront NO formation and superequilibrium radical concentrations in laminar high-pressure premixed flames,” Proc. Combust. Inst. 23, 387–395 (1990).
[CrossRef]

1988 (1)

Akihama, K.

K. Akihama, T. Fujikawa, Y. Hattori, “Laser-induced fluorescence imaging of NO in a port-fuel-injected statified-charge SI engine—correlations between NO formation region and stratified fuel distribution,” (Society of Automotive Engineers, Warrendale, Pa., 1998).

Alatas, B.

B. Alatas, J. A. Pinson, T. A. Litzinger, D. A. Santavicca, “A study of NO and soot evolution in a DI Diesel engine via planar imaging,” (Society of Automotive Engineers, Warrendale, Pa., 1993).

Aldén, M.

P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Andresen, P.

M. Knapp, A. Luczak, H. Schlüter, V. Beushausen, W. Hentschel, P. Andresen, “Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release,” Appl. Opt. 35, 4009–4017 (1996).
[CrossRef] [PubMed]

P. Andresen, G. Meijer, H. Schluter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

A. M. Wodtke, M. Huwel, H. Schluter, G. Meijer, P. Andresen, H. Voges, “High-sensitivity detection of NO in a flame using a tunable ArF laser,” Opt. Lett. 13, 910–912 (1988).
[CrossRef] [PubMed]

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Quantitative in-cylinder NO LIF measurements with a KrF excimer laser applied to a mass-production SI engine fueled with isooctane and regular gasoline,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

V. Beushàusen, M. Knapp, A. Luczak, S. Eisenberg, P. Andresen, “Application of laser-induced fluorescence and spontaneous Raman scattering to technically applied combustion systems: four cylinder spark ignition engine and oil burning furnace,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 142–144.

Arnold, A.

A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993).
[CrossRef]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” Proc. Combust. Inst. 24, 1605–1612 (1992).
[CrossRef]

Barbella, R.

A. Cialolo, R. Barbella, A. Tregrossi, L. Bonfanti, “Spectroscopic and compositional signatures of PAH-loaded mixtures in the soot inception region of a premixed ethylene flame,” Proc. Combust. Inst. 27, 1481–1487 (1998).

Barlow, R. S.

R. S. Barlow, J. H. Frank, “Effects of turbulence on species mass fractions in methane/air jet flames,” Proc. Combust. Inst. 27, 1087–1095 (1998).
[CrossRef]

Battles, B. E.

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

Bengtsson, P.-E.

P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Berg, P. A.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH (A), OH A, and NO (A) in low-pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Bessler, W. G.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003).
[CrossRef]

M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence for soot diagnostics at high pressure,” Appl. Opt., 4252052–2062 (2003).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt. 42, 2031–2042 (2003).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson. “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0, 1) excitation,” in Proceedings of the Western States Section of the Combustion Institute, Spring Meeting (Combustion Institute, Pittsburgh, Pa., 2001).

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson. “Quantitative NO-LIF imaging in high-pressure flames,” in First International Conference on Optical and Laser Diagnostics (ICOLAD) (Institute of Physics, London, 2002), pp. 97–102.

W. G. Bessler, C. Schulz, V. Sick, J. W. Daily. “A versatile modeling tool for nitric oxide LIF spectra,” in the Third Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2003), p. P11–6.

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in methane/air flames at pressures between 1 and 60 bar,” paper AIAA-2002-0399, presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 5–8 Jan. 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Beushausen, V.

M. Knapp, A. Luczak, H. Schlüter, V. Beushausen, W. Hentschel, P. Andresen, “Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release,” Appl. Opt. 35, 4009–4017 (1996).
[CrossRef] [PubMed]

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Quantitative in-cylinder NO LIF measurements with a KrF excimer laser applied to a mass-production SI engine fueled with isooctane and regular gasoline,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

Beushàusen, V.

V. Beushàusen, M. Knapp, A. Luczak, S. Eisenberg, P. Andresen, “Application of laser-induced fluorescence and spontaneous Raman scattering to technically applied combustion systems: four cylinder spark ignition engine and oil burning furnace,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 142–144.

Blint, R. J.

M. C. Drake, J. W. Ratcliffe, R. J. Blint, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of flamefront NO formation and superequilibrium radical concentrations in laminar high-pressure premixed flames,” Proc. Combust. Inst. 23, 387–395 (1990).
[CrossRef]

Bonfanti, L.

A. Cialolo, R. Barbella, A. Tregrossi, L. Bonfanti, “Spectroscopic and compositional signatures of PAH-loaded mixtures in the soot inception region of a premixed ethylene flame,” Proc. Combust. Inst. 27, 1481–1487 (1998).

Bräumer, A.

A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993).
[CrossRef]

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” (Society of Automotive Engineers, Warrendale, Pa., 1995).

Brugmann, T. M.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. t. Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

T. M. Brugmann, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and Diesel-fuel-driven Diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

Buschmann, A.

A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993).
[CrossRef]

Campisi, A.

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO+H2+CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

Canaan, R. E.

J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1998).

Carter, C. D.

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Laser-induced fluorescence measurements of nitric oxide in laminar C2H6/O2/N2 flames at high pressure,” Combust. Flame 92, 485–489 (1993).
[CrossRef]

M. C. Drake, J. W. Ratcliffe, R. J. Blint, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of flamefront NO formation and superequilibrium radical concentrations in laminar high-pressure premixed flames,” Proc. Combust. Inst. 23, 387–395 (1990).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quencing cross-section,” (Sandia National Laboratories, Livermore, Calif., 1994).

Chadwick, B. L.

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO+H2+CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

Chang, A. Y.

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Charlston-Goch, D.

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO+H2+CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

Cialolo, A.

A. Cialolo, R. Barbella, A. Tregrossi, L. Bonfanti, “Spectroscopic and compositional signatures of PAH-loaded mixtures in the soot inception region of a premixed ethylene flame,” Proc. Combust. Inst. 27, 1481–1487 (1998).

Cooper, C. S.

C. S. Cooper, N. M. Laurendeau, “Quantitative measurements of nitric oxide in high-pressure (2–5 atm), swirl-stabilized spray flames via laser-induced fluorescence,” Combust. Flame 123, 175–188 (2000).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Laser-induced fluorescence measurements in lean direct-injection spray flames: technique development and application,” Meas. Sci. Technol. 11, 902–911 (2000).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames,” Proc. Combust. Inst. 28, 287–293 (2000).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Comparison of laser-induced and planar laser-induced fluorescence measurements of nitric oxide in a high-pressure, swirl-stabilized, spray flame,” Appl. Phys. B 70, 903–910 (2000).
[CrossRef]

Crosley, D. R.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH (A), OH A, and NO (A) in low-pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

R. Zhang, D. R. Crosley, “Temperature dependent quenching of A 2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
[CrossRef]

Daily, J. W.

W. G. Bessler, C. Schulz, V. Sick, J. W. Daily. “A versatile modeling tool for nitric oxide LIF spectra,” in the Third Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2003), p. P11–6.

Dam, N.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. t. Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

G. G. M. Stoffels, E.-J. van den Boom, C. M. I. Spaanjaars, N. Dam, W. L. Meerts, J. J. ter Meulen, J. L. C. Duff, D. J. Rickeard, “In-cylinder measurements of NO formation in a Disel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

N. Dam, W. L. Meerts, J. J. ter Meulen, “Laser diagnostics of nitric oxide inside a two-stroke DI Diesel engine,” in Laser Techniques Applied to Fluid Mechanics: Selected Papers from the Ninth International Symposium, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (Springer-Verlag, New York, 2000), chap. 7.
[CrossRef]

Dam, N. J.

E.-J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen. “Laser diagnostics in a Diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–600 (2001).
[CrossRef]

Davidson, D. F.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2743 (2002).
[CrossRef]

Dec, J. E.

J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1998).

Decker, M.

A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993).
[CrossRef]

Deguchi, Y.

H. Nakagawa, H. Endo, Y. Deguchi, M. Noda, H. Oikawa, T. Shimada, “NO measurement in Diesel spray flame using laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

Deschamps, B.

P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, “Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A-X(0, 1) excitation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

Desgroux, P.

P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, “Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A-X(0, 1) excitation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

Dillmann, M.

A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A-X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B. 61, 409–414 (1995).
[CrossRef]

Dinkelacker, F.

A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993).
[CrossRef]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” Proc. Combust. Inst. 24, 1605–1612 (1992).
[CrossRef]

DiRosa, M. D.

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF Spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NO (0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO (0, 0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Drabbels, M.

Drake, M. C.

M. C. Drake, J. W. Ratcliffe, “High temperature quenching cross sections for nitric oxide laser-induced fluorescence measurements,” J. Chem. Phys. 98, 3850–3865 (1993).
[CrossRef]

M. C. Drake, J. W. Ratcliffe, R. J. Blint, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of flamefront NO formation and superequilibrium radical concentrations in laminar high-pressure premixed flames,” Proc. Combust. Inst. 23, 387–395 (1990).
[CrossRef]

Dreier, T.

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

Dreizler, A.

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

Drewes, V.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).
[CrossRef]

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” (Society of Automotive Engineers, Warrendale, Pa., 1995).

Duff, J. L. C.

G. G. M. Stoffels, E.-J. van den Boom, C. M. I. Spaanjaars, N. Dam, W. L. Meerts, J. J. ter Meulen, J. L. C. Duff, D. J. Rickeard, “In-cylinder measurements of NO formation in a Disel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

Durant, J. L.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO A2Σ+ (v′ = 0),” Chem. Phys. Lett. 259, 508–541 (1996).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

J. W. Thoman, J. A. Gray, J. L. Durant, P. H. Paul, “Collisional electronic quenching of NO A2Σ+ by N2 from 300 to 4500 K,” J. Chem. Phys. 97, 8156–8163 (1992).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quencing cross-section,” (Sandia National Laboratories, Livermore, Calif., 1994).

Ebben, M.

Eberius, H.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz. “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989).

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).

Eisenberg, S.

V. Beushàusen, M. Knapp, A. Luczak, S. Eisenberg, P. Andresen, “Application of laser-induced fluorescence and spontaneous Raman scattering to technically applied combustion systems: four cylinder spark ignition engine and oil burning furnace,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 142–144.

Endo, H.

H. Nakagawa, H. Endo, Y. Deguchi, M. Noda, H. Oikawa, T. Shimada, “NO measurement in Diesel spray flame using laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

Frank, J. H.

R. S. Barlow, J. H. Frank, “Effects of turbulence on species mass fractions in methane/air jet flames,” Proc. Combust. Inst. 27, 1087–1095 (1998).
[CrossRef]

Fujikawa, T.

K. Akihama, T. Fujikawa, Y. Hattori, “Laser-induced fluorescence imaging of NO in a port-fuel-injected statified-charge SI engine—correlations between NO formation region and stratified fuel distribution,” (Society of Automotive Engineers, Warrendale, Pa., 1998).

Fujimoto, M.

T. Tanaka, M. Fujimoto, M. Tabata, “Planar measurements of NO in an S.I. engine based on laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

Furlanetto, M. R.

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quencing cross-section,” (Sandia National Laboratories, Livermore, Calif., 1994).

Gray, J. A.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO A2Σ+ (v′ = 0),” Chem. Phys. Lett. 259, 508–541 (1996).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

J. W. Thoman, J. A. Gray, J. L. Durant, P. H. Paul, “Collisional electronic quenching of NO A2Σ+ by N2 from 300 to 4500 K,” J. Chem. Phys. 97, 8156–8163 (1992).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quencing cross-section,” (Sandia National Laboratories, Livermore, Calif., 1994).

Hanson, R. K.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt. 42, 2031–2042 (2003).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2743 (2002).
[CrossRef]

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF Spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO (0, 0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NO (0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in methane/air flames at pressures between 1 and 60 bar,” paper AIAA-2002-0399, presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 5–8 Jan. 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson. “Quantitative NO-LIF imaging in high-pressure flames,” in First International Conference on Optical and Laser Diagnostics (ICOLAD) (Institute of Physics, London, 2002), pp. 97–102.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson. “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0, 1) excitation,” in Proceedings of the Western States Section of the Combustion Institute, Spring Meeting (Combustion Institute, Pittsburgh, Pa., 2001).

Harrington, J. E.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH (A), OH A, and NO (A) in low-pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Hartmann, M.

F. Hildenbrand, C. Schulz, M. Hartmann, F. Puchner, G. Wawrschin, “In-cylinder NO-LIF imaging in a realistic GDI engine using KrF excimer laser excitation,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

Hattori, Y.

K. Akihama, T. Fujikawa, Y. Hattori, “Laser-induced fluorescence imaging of NO in a port-fuel-injected statified-charge SI engine—correlations between NO formation region and stratified fuel distribution,” (Society of Automotive Engineers, Warrendale, Pa., 1998).

Heinze, J.

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced fluorescence detection of nitric oxide in high-pressure flames with A–X(0, 2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
[CrossRef] [PubMed]

A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A-X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B. 61, 409–414 (1995).
[CrossRef]

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0, 0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).
[CrossRef]

C. Schulz, V. Sick, J. Heinze, W. Stricker, “A new approach to laser-induced fluorescence detection of nitric oxide in high pressure flames,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3. of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 133–135.

Heitzmann, T.

A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993).
[CrossRef]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” Proc. Combust. Inst. 24, 1605–1612 (1992).
[CrossRef]

Hentschel, W.

M. Knapp, A. Luczak, H. Schlüter, V. Beushausen, W. Hentschel, P. Andresen, “Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release,” Appl. Opt. 35, 4009–4017 (1996).
[CrossRef] [PubMed]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” Proc. Combust. Inst. 24, 1605–1612 (1992).
[CrossRef]

P. Andresen, G. Meijer, H. Schluter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Quantitative in-cylinder NO LIF measurements with a KrF excimer laser applied to a mass-production SI engine fueled with isooctane and regular gasoline,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

Hildenbrand, F.

F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, E. Wagner, “Spatially resolved investigation of light absorption in an SI engine fueled with propane/air,” Appl. Opt. 38, 1452–1458 (1999).
[CrossRef]

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

F. Hildenbrand, C. Schulz, M. Hartmann, F. Puchner, G. Wawrschin, “In-cylinder NO-LIF imaging in a realistic GDI engine using KrF excimer laser excitation,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. G. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” in VDI Flammentag Dresden, VDI Berichte 1492 (1999), pp. 269–274.

Hofmann, M.

M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence for soot diagnostics at high pressure,” Appl. Opt., 4252052–2062 (2003).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson. “Quantitative NO-LIF imaging in high-pressure flames,” in First International Conference on Optical and Laser Diagnostics (ICOLAD) (Institute of Physics, London, 2002), pp. 97–102.

Höfner, G.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz. “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989).

Huigen, G.

T. M. Brugmann, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and Diesel-fuel-driven Diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

Huwel, M.

Jamette, P.

P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, “Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A-X(0, 1) excitation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

Jander, H.

M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence for soot diagnostics at high pressure,” Appl. Opt., 4252052–2062 (2003).
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. G. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” in VDI Flammentag Dresden, VDI Berichte 1492 (1999), pp. 269–274.

Jeffries, J. B.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt. 42, 2031–2042 (2003).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2743 (2002).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH (A), OH A, and NO (A) in low-pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in methane/air flames at pressures between 1 and 60 bar,” paper AIAA-2002-0399, presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 5–8 Jan. 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson. “Quantitative NO-LIF imaging in high-pressure flames,” in First International Conference on Optical and Laser Diagnostics (ICOLAD) (Institute of Physics, London, 2002), pp. 97–102.

K. Kohse-Höinghaus, J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, New York, 2002).

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson. “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0, 1) excitation,” in Proceedings of the Western States Section of the Combustion Institute, Spring Meeting (Combustion Institute, Pittsburgh, Pa., 2001).

Just, T.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz. “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989).

Keller, F.

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

Kick, T.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz. “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989).

Klavuhn, K. G.

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF Spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

Klein-Douwel, R.

T. M. Brugmann, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and Diesel-fuel-driven Diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

Knapp, M.

M. Knapp, A. Luczak, H. Schlüter, V. Beushausen, W. Hentschel, P. Andresen, “Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release,” Appl. Opt. 35, 4009–4017 (1996).
[CrossRef] [PubMed]

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Quantitative in-cylinder NO LIF measurements with a KrF excimer laser applied to a mass-production SI engine fueled with isooctane and regular gasoline,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

V. Beushàusen, M. Knapp, A. Luczak, S. Eisenberg, P. Andresen, “Application of laser-induced fluorescence and spontaneous Raman scattering to technically applied combustion systems: four cylinder spark ignition engine and oil burning furnace,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 142–144.

Koch, A.

Koch, J. D.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2743 (2002).
[CrossRef]

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

K. Kohse-Höinghaus, J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, New York, 2002).

König, G.

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

Kuligowski, F. F.

Laurendeau, N. M.

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO+H2+CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Comparison of laser-induced and planar laser-induced fluorescence measurements of nitric oxide in a high-pressure, swirl-stabilized, spray flame,” Appl. Phys. B 70, 903–910 (2000).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Quantitative measurements of nitric oxide in high-pressure (2–5 atm), swirl-stabilized spray flames via laser-induced fluorescence,” Combust. Flame 123, 175–188 (2000).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Laser-induced fluorescence measurements in lean direct-injection spray flames: technique development and application,” Meas. Sci. Technol. 11, 902–911 (2000).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames,” Proc. Combust. Inst. 28, 287–293 (2000).
[CrossRef]

D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Modeling of NO formation in premixed, high-pressure methane flames,” Combust. Flame 119, 307–318 (1999).
[CrossRef]

D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997).
[CrossRef] [PubMed]

J. R. Reisel, W. P. Partridge, N. M. Laurendeau, “Transportability of a laser-induced fluorescence calibration for NO at high pressure,” J. Quant. Spectrosc. Radiat. Transfer 53, 165–178 (1995).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames,” Combust. Flame 101, 141–152 (1995).
[CrossRef]

W. P. Partridge, N. M. Laurendeau, “Formulation of a dimensionless overlap fraction to account for spectrally distributed interactions in fluorescence studies,” Appl. Opt. 34, 2645–2647 (1995).
[CrossRef] [PubMed]

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements of nitric oxide in laminar high-temperature flames,” Energy Fuels 8, 1115–1122 (1994).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Laser-induced fluorescence measurements of nitric oxide in laminar C2H6/O2/N2 flames at high pressure,” Combust. Flame 92, 485–489 (1993).
[CrossRef]

M. C. Drake, J. W. Ratcliffe, R. J. Blint, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of flamefront NO formation and superequilibrium radical concentrations in laminar high-pressure premixed flames,” Proc. Combust. Inst. 23, 387–395 (1990).
[CrossRef]

Lee, T.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt. 42, 2031–2042 (2003).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson. “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0, 1) excitation,” in Proceedings of the Western States Section of the Combustion Institute, Spring Meeting (Combustion Institute, Pittsburgh, Pa., 2001).

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson. “Quantitative NO-LIF imaging in high-pressure flames,” in First International Conference on Optical and Laser Diagnostics (ICOLAD) (Institute of Physics, London, 2002), pp. 97–102.

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in methane/air flames at pressures between 1 and 60 bar,” paper AIAA-2002-0399, presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 5–8 Jan. 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Levinsky, H. B.

Litzinger, T. A.

B. Alatas, J. A. Pinson, T. A. Litzinger, D. A. Santavicca, “A study of NO and soot evolution in a DI Diesel engine via planar imaging,” (Society of Automotive Engineers, Warrendale, Pa., 1993).

Luczak, A.

M. Knapp, A. Luczak, H. Schlüter, V. Beushausen, W. Hentschel, P. Andresen, “Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release,” Appl. Opt. 35, 4009–4017 (1996).
[CrossRef] [PubMed]

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Quantitative in-cylinder NO LIF measurements with a KrF excimer laser applied to a mass-production SI engine fueled with isooctane and regular gasoline,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

V. Beushàusen, M. Knapp, A. Luczak, S. Eisenberg, P. Andresen, “Application of laser-induced fluorescence and spontaneous Raman scattering to technically applied combustion systems: four cylinder spark ignition engine and oil burning furnace,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 142–144.

Luque, J.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH (A), OH A, and NO (A) in low-pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Lutz, W.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz. “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989).

Maly, R.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).
[CrossRef]

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” (Society of Automotive Engineers, Warrendale, Pa., 1995).

Manz, P.

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Quantitative in-cylinder NO LIF measurements with a KrF excimer laser applied to a mass-production SI engine fueled with isooctane and regular gasoline,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

McMillin, B. K.

Meerts, W. L.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. t. Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

G. G. M. Stoffels, E.-J. van den Boom, C. M. I. Spaanjaars, N. Dam, W. L. Meerts, J. J. ter Meulen, J. L. C. Duff, D. J. Rickeard, “In-cylinder measurements of NO formation in a Disel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

N. Dam, W. L. Meerts, J. J. ter Meulen, “Laser diagnostics of nitric oxide inside a two-stroke DI Diesel engine,” in Laser Techniques Applied to Fluid Mechanics: Selected Papers from the Ninth International Symposium, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (Springer-Verlag, New York, 2000), chap. 7.
[CrossRef]

E.-J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen. “Laser diagnostics in a Diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–600 (2001).
[CrossRef]

Meier, U.

Meier, U. E.

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0, 0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).
[CrossRef]

A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A-X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B. 61, 409–414 (1995).
[CrossRef]

Meijer, G.

Mokhov, A. V.

Monkhouse, P.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” Proc. Combust. Inst. 24, 1605–1612 (1992).
[CrossRef]

Monkhouse, P. B.

E.-J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen. “Laser diagnostics in a Diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–600 (2001).
[CrossRef]

Morrison, R. J. S.

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO+H2+CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

Nakagawa, H.

H. Nakagawa, H. Endo, Y. Deguchi, M. Noda, H. Oikawa, T. Shimada, “NO measurement in Diesel spray flame using laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

Noda, M.

H. Nakagawa, H. Endo, Y. Deguchi, M. Noda, H. Oikawa, T. Shimada, “NO measurement in Diesel spray flame using laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

Oikawa, H.

H. Nakagawa, H. Endo, Y. Deguchi, M. Noda, H. Oikawa, T. Shimada, “NO measurement in Diesel spray flame using laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

Oppermann, W.

Orth, A.

A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993).
[CrossRef]

Palmer, J. L.

J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

Partridge, W. P.

J. R. Reisel, W. P. Partridge, N. M. Laurendeau, “Transportability of a laser-induced fluorescence calibration for NO at high pressure,” J. Quant. Spectrosc. Radiat. Transfer 53, 165–178 (1995).
[CrossRef]

W. P. Partridge, N. M. Laurendeau, “Formulation of a dimensionless overlap fraction to account for spectrally distributed interactions in fluorescence studies,” Appl. Opt. 34, 2645–2647 (1995).
[CrossRef] [PubMed]

Paul, P. H.

P. H. Paul, “Calculation of transition frequencies and roational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO A2Σ+ (v′ = 0),” Chem. Phys. Lett. 259, 508–541 (1996).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

J. W. Thoman, J. A. Gray, J. L. Durant, P. H. Paul, “Collisional electronic quenching of NO A2Σ+ by N2 from 300 to 4500 K,” J. Chem. Phys. 97, 8156–8163 (1992).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quencing cross-section,” (Sandia National Laboratories, Livermore, Calif., 1994).

Pinson, J. A.

B. Alatas, J. A. Pinson, T. A. Litzinger, D. A. Santavicca, “A study of NO and soot evolution in a DI Diesel engine via planar imaging,” (Society of Automotive Engineers, Warrendale, Pa., 1993).

Puchner, F.

F. Hildenbrand, C. Schulz, M. Hartmann, F. Puchner, G. Wawrschin, “In-cylinder NO-LIF imaging in a realistic GDI engine using KrF excimer laser excitation,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

Ratcliffe, J. W.

M. C. Drake, J. W. Ratcliffe, “High temperature quenching cross sections for nitric oxide laser-induced fluorescence measurements,” J. Chem. Phys. 98, 3850–3865 (1993).
[CrossRef]

M. C. Drake, J. W. Ratcliffe, R. J. Blint, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of flamefront NO formation and superequilibrium radical concentrations in laminar high-pressure premixed flames,” Proc. Combust. Inst. 23, 387–395 (1990).
[CrossRef]

Reisel, J. R.

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames,” Combust. Flame 101, 141–152 (1995).
[CrossRef]

J. R. Reisel, W. P. Partridge, N. M. Laurendeau, “Transportability of a laser-induced fluorescence calibration for NO at high pressure,” J. Quant. Spectrosc. Radiat. Transfer 53, 165–178 (1995).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements of nitric oxide in laminar high-temperature flames,” Energy Fuels 8, 1115–1122 (1994).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Laser-induced fluorescence measurements of nitric oxide in laminar C2H6/O2/N2 flames at high pressure,” Combust. Flame 92, 485–489 (1993).
[CrossRef]

Rickeard, D. J.

G. G. M. Stoffels, E.-J. van den Boom, C. M. I. Spaanjaars, N. Dam, W. L. Meerts, J. J. ter Meulen, J. L. C. Duff, D. J. Rickeard, “In-cylinder measurements of NO formation in a Disel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

Ricordeau, V.

P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, “Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A-X(0, 1) excitation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

Rothe, E.

Santavicca, D. A.

B. Alatas, J. A. Pinson, T. A. Litzinger, D. A. Santavicca, “A study of NO and soot evolution in a DI Diesel engine via planar imaging,” (Society of Automotive Engineers, Warrendale, Pa., 1993).

Schäfer, M.

A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993).
[CrossRef]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” Proc. Combust. Inst. 24, 1605–1612 (1992).
[CrossRef]

Schenk, M.

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

Schindler, K.-P.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” Proc. Combust. Inst. 24, 1605–1612 (1992).
[CrossRef]

Schluter, H.

Schlüter, H.

Schulz, C.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt. 42, 2031–2042 (2003).
[CrossRef] [PubMed]

M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence for soot diagnostics at high pressure,” Appl. Opt., 4252052–2062 (2003).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2743 (2002).
[CrossRef]

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, E. Wagner, “Spatially resolved investigation of light absorption in an SI engine fueled with propane/air,” Appl. Opt. 38, 1452–1458 (1999).
[CrossRef]

C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced fluorescence detection of nitric oxide in high-pressure flames with A–X(0, 2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
[CrossRef] [PubMed]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).
[CrossRef]

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson. “Quantitative NO-LIF imaging in high-pressure flames,” in First International Conference on Optical and Laser Diagnostics (ICOLAD) (Institute of Physics, London, 2002), pp. 97–102.

F. Hildenbrand, C. Schulz, M. Hartmann, F. Puchner, G. Wawrschin, “In-cylinder NO-LIF imaging in a realistic GDI engine using KrF excimer laser excitation,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

C. Schulz, V. Sick, J. Heinze, W. Stricker, “A new approach to laser-induced fluorescence detection of nitric oxide in high pressure flames,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3. of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 133–135.

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson. “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0, 1) excitation,” in Proceedings of the Western States Section of the Combustion Institute, Spring Meeting (Combustion Institute, Pittsburgh, Pa., 2001).

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. G. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” in VDI Flammentag Dresden, VDI Berichte 1492 (1999), pp. 269–274.

W. G. Bessler, C. Schulz, V. Sick, J. W. Daily. “A versatile modeling tool for nitric oxide LIF spectra,” in the Third Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2003), p. P11–6.

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in methane/air flames at pressures between 1 and 60 bar,” paper AIAA-2002-0399, presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 5–8 Jan. 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Shimada, T.

H. Nakagawa, H. Endo, Y. Deguchi, M. Noda, H. Oikawa, T. Shimada, “NO measurement in Diesel spray flame using laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

Shin, D. I.

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson. “Quantitative NO-LIF imaging in high-pressure flames,” in First International Conference on Optical and Laser Diagnostics (ICOLAD) (Institute of Physics, London, 2002), pp. 97–102.

Shin, D.-I.

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in methane/air flames at pressures between 1 and 60 bar,” paper AIAA-2002-0399, presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 5–8 Jan. 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

Sick, V.

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, E. Wagner, “Spatially resolved investigation of light absorption in an SI engine fueled with propane/air,” Appl. Opt. 38, 1452–1458 (1999).
[CrossRef]

C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced fluorescence detection of nitric oxide in high-pressure flames with A–X(0, 2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
[CrossRef] [PubMed]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).
[CrossRef]

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993).
[CrossRef]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” Proc. Combust. Inst. 24, 1605–1612 (1992).
[CrossRef]

C. Schulz, V. Sick, J. Heinze, W. Stricker, “A new approach to laser-induced fluorescence detection of nitric oxide in high pressure flames,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3. of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 133–135.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” (Society of Automotive Engineers, Warrendale, Pa., 1995).

W. G. Bessler, C. Schulz, V. Sick, J. W. Daily. “A versatile modeling tool for nitric oxide LIF spectra,” in the Third Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2003), p. P11–6.

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. G. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” in VDI Flammentag Dresden, VDI Berichte 1492 (1999), pp. 269–274.

Smith, G. P.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH (A), OH A, and NO (A) in low-pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Spaanjaars, C. M. I.

E.-J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen. “Laser diagnostics in a Diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–600 (2001).
[CrossRef]

G. G. M. Stoffels, E.-J. van den Boom, C. M. I. Spaanjaars, N. Dam, W. L. Meerts, J. J. ter Meulen, J. L. C. Duff, D. J. Rickeard, “In-cylinder measurements of NO formation in a Disel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

Stoffels, G. G. M.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. t. Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

G. G. M. Stoffels, E.-J. van den Boom, C. M. I. Spaanjaars, N. Dam, W. L. Meerts, J. J. ter Meulen, J. L. C. Duff, D. J. Rickeard, “In-cylinder measurements of NO formation in a Disel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

Stricker, W.

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced fluorescence detection of nitric oxide in high-pressure flames with A–X(0, 2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
[CrossRef] [PubMed]

A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A-X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B. 61, 409–414 (1995).
[CrossRef]

C. Schulz, V. Sick, J. Heinze, W. Stricker, “A new approach to laser-induced fluorescence detection of nitric oxide in high pressure flames,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3. of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 133–135.

t. Meulen, J. J.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. t. Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

Tabata, M.

T. Tanaka, M. Fujimoto, M. Tabata, “Planar measurements of NO in an S.I. engine based on laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

Tamura, M.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH (A), OH A, and NO (A) in low-pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Tanaka, T.

T. Tanaka, M. Fujimoto, M. Tabata, “Planar measurements of NO in an S.I. engine based on laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

ter Meulen, J. J.

T. M. Brugmann, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and Diesel-fuel-driven Diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

M. Versluis, M. Ebben, M. Drabbels, J. J. ter Meulen, “Frequency calibration in the ArF excimer laser-tuning range using laser-induced fluorescence of NO,” Appl. Opt. 30, 5229–5234 (1991).
[CrossRef] [PubMed]

G. G. M. Stoffels, E.-J. van den Boom, C. M. I. Spaanjaars, N. Dam, W. L. Meerts, J. J. ter Meulen, J. L. C. Duff, D. J. Rickeard, “In-cylinder measurements of NO formation in a Disel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

N. Dam, W. L. Meerts, J. J. ter Meulen, “Laser diagnostics of nitric oxide inside a two-stroke DI Diesel engine,” in Laser Techniques Applied to Fluid Mechanics: Selected Papers from the Ninth International Symposium, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (Springer-Verlag, New York, 2000), chap. 7.
[CrossRef]

E.-J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen. “Laser diagnostics in a Diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–600 (2001).
[CrossRef]

Thoman, J. W.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO A2Σ+ (v′ = 0),” Chem. Phys. Lett. 259, 508–541 (1996).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

J. W. Thoman, J. A. Gray, J. L. Durant, P. H. Paul, “Collisional electronic quenching of NO A2Σ+ by N2 from 300 to 4500 K,” J. Chem. Phys. 97, 8156–8163 (1992).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quencing cross-section,” (Sandia National Laboratories, Livermore, Calif., 1994).

Thomsen, D. D.

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO+H2+CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Modeling of NO formation in premixed, high-pressure methane flames,” Combust. Flame 119, 307–318 (1999).
[CrossRef]

D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997).
[CrossRef] [PubMed]

Tregrossi, A.

A. Cialolo, R. Barbella, A. Tregrossi, L. Bonfanti, “Spectroscopic and compositional signatures of PAH-loaded mixtures in the soot inception region of a premixed ethylene flame,” Proc. Combust. Inst. 27, 1481–1487 (1998).

van den Boom, E.-J.

G. G. M. Stoffels, E.-J. van den Boom, C. M. I. Spaanjaars, N. Dam, W. L. Meerts, J. J. ter Meulen, J. L. C. Duff, D. J. Rickeard, “In-cylinder measurements of NO formation in a Disel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

E.-J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen. “Laser diagnostics in a Diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–600 (2001).
[CrossRef]

van der Meij, C. E.

van Walwijk, E.

T. M. Brugmann, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and Diesel-fuel-driven Diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

Versluis, M.

Voges, H.

Vyrodov, A. O.

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0, 0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).
[CrossRef]

A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A-X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B. 61, 409–414 (1995).
[CrossRef]

Wagner, E.

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, E. Wagner, “Spatially resolved investigation of light absorption in an SI engine fueled with propane/air,” Appl. Opt. 38, 1452–1458 (1999).
[CrossRef]

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

Wagner, H. G.

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. G. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” in VDI Flammentag Dresden, VDI Berichte 1492 (1999), pp. 269–274.

Wawrschin, G.

F. Hildenbrand, C. Schulz, M. Hartmann, F. Puchner, G. Wawrschin, “In-cylinder NO-LIF imaging in a realistic GDI engine using KrF excimer laser excitation,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

Wodtke, A. M.

Wolfrum, J.

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2743 (2002).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).
[CrossRef]

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993).
[CrossRef]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” Proc. Combust. Inst. 24, 1605–1612 (1992).
[CrossRef]

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” (Society of Automotive Engineers, Warrendale, Pa., 1995).

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson. “Quantitative NO-LIF imaging in high-pressure flames,” in First International Conference on Optical and Laser Diagnostics (ICOLAD) (Institute of Physics, London, 2002), pp. 97–102.

Yip, B.

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

Zahn, M.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).
[CrossRef]

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” (Society of Automotive Engineers, Warrendale, Pa., 1995).

Zhang, R.

R. Zhang, D. R. Crosley, “Temperature dependent quenching of A 2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
[CrossRef]

Appl. Opt. (13)

M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence for soot diagnostics at high pressure,” Appl. Opt., 4252052–2062 (2003).
[CrossRef]

M. Versluis, M. Ebben, M. Drabbels, J. J. ter Meulen, “Frequency calibration in the ArF excimer laser-tuning range using laser-induced fluorescence of NO,” Appl. Opt. 30, 5229–5234 (1991).
[CrossRef] [PubMed]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced fluorescence detection of nitric oxide in high-pressure flames with A–X(0, 2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
[CrossRef] [PubMed]

A. V. Mokhov, H. B. Levinsky, C. E. van der Meij, “Temperature dependence of laser-induced fluorescence of nitric oxide in laminar premixed atmospheric-pressure flames,” Appl. Opt. 36, 3233–3243 (1997).
[CrossRef] [PubMed]

D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997).
[CrossRef] [PubMed]

W. P. Partridge, N. M. Laurendeau, “Formulation of a dimensionless overlap fraction to account for spectrally distributed interactions in fluorescence studies,” Appl. Opt. 34, 2645–2647 (1995).
[CrossRef] [PubMed]

M. Knapp, A. Luczak, H. Schlüter, V. Beushausen, W. Hentschel, P. Andresen, “Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release,” Appl. Opt. 35, 4009–4017 (1996).
[CrossRef] [PubMed]

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, E. Wagner, “Spatially resolved investigation of light absorption in an SI engine fueled with propane/air,” Appl. Opt. 38, 1452–1458 (1999).
[CrossRef]

P. Andresen, G. Meijer, H. Schluter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A–X(0, 0) excitation,” Appl. Opt. 41, 3547–3557 (2002).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0, 1) excitation,” Appl. Opt. 42, 2031–2042 (2003).
[CrossRef] [PubMed]

Appl. Phys. B (8)

C. S. Cooper, N. M. Laurendeau, “Comparison of laser-induced and planar laser-induced fluorescence measurements of nitric oxide in a high-pressure, swirl-stabilized, spray flame,” Appl. Phys. B 70, 903–910 (2000).
[CrossRef]

T. M. Brugmann, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and Diesel-fuel-driven Diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. Meerts, J. J. t. Meulen, “Imaging and post-processing of laser-induced fluorescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson, “Quantitative NO-LIF imaging in high-pressure flames,” Appl. Phys. B 75, 97–102 (2002).
[CrossRef]

Appl. Phys. B. (1)

A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A-X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B. 61, 409–414 (1995).
[CrossRef]

Ber. Bunsenges. Phys. Chem (1)

A. Arnold, A. Bräumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D-diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem 97, 1650–1661 (1993).
[CrossRef]

Chem. Phys. Lett. (4)

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson, “Carbon dioxide UV laser-induced fluorescence in high-pressure flames,” Chem. Phys. Lett. 375, 344–349 (2003).
[CrossRef]

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional electronic quenching rates for NO A2Σ+ (v′ = 0),” Chem. Phys. Lett. 259, 508–541 (1996).
[CrossRef]

Combust. Flame (6)

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, D. R. Crosley, “Collisional quenching of CH (A), OH A, and NO (A) in low-pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Laser-induced fluorescence measurements of nitric oxide in laminar C2H6/O2/N2 flames at high pressure,” Combust. Flame 92, 485–489 (1993).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames,” Combust. Flame 101, 141–152 (1995).
[CrossRef]

D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Modeling of NO formation in premixed, high-pressure methane flames,” Combust. Flame 119, 307–318 (1999).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Quantitative measurements of nitric oxide in high-pressure (2–5 atm), swirl-stabilized spray flames via laser-induced fluorescence,” Combust. Flame 123, 175–188 (2000).
[CrossRef]

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO+H2+CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

Combust. Sci. Technol. (2)

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF Spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
[CrossRef]

Energy Fuels (1)

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements of nitric oxide in laminar high-temperature flames,” Energy Fuels 8, 1115–1122 (1994).
[CrossRef]

J. Chem. Phys. (3)

M. C. Drake, J. W. Ratcliffe, “High temperature quenching cross sections for nitric oxide laser-induced fluorescence measurements,” J. Chem. Phys. 98, 3850–3865 (1993).
[CrossRef]

J. W. Thoman, J. A. Gray, J. L. Durant, P. H. Paul, “Collisional electronic quenching of NO A2Σ+ by N2 from 300 to 4500 K,” J. Chem. Phys. 97, 8156–8163 (1992).
[CrossRef]

R. Zhang, D. R. Crosley, “Temperature dependent quenching of A 2Σ+ NO between 215 and 300 K,” J. Chem. Phys. 102, 7418–7424 (1995).
[CrossRef]

J. Mol. Spectrosc. (1)

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO (0, 0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (6)

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0, 0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).
[CrossRef]

A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A–X(0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision broadening and shift of NO (0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

J. R. Reisel, W. P. Partridge, N. M. Laurendeau, “Transportability of a laser-induced fluorescence calibration for NO at high pressure,” J. Quant. Spectrosc. Radiat. Transfer 53, 165–178 (1995).
[CrossRef]

P. H. Paul, “Calculation of transition frequencies and roational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

C. S. Cooper, N. M. Laurendeau, “Laser-induced fluorescence measurements in lean direct-injection spray flames: technique development and application,” Meas. Sci. Technol. 11, 902–911 (2000).
[CrossRef]

Opt. Lett. (1)

Proc. Combust. Inst. (8)

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” Proc. Combust. Inst. 28, 1137–1144 (2000).
[CrossRef]

M. C. Drake, J. W. Ratcliffe, R. J. Blint, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of flamefront NO formation and superequilibrium radical concentrations in laminar high-pressure premixed flames,” Proc. Combust. Inst. 23, 387–395 (1990).
[CrossRef]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” Proc. Combust. Inst. 24, 1605–1612 (1992).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” Proc. Combust. Inst. 26, 2597–2604 (1996).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames,” Proc. Combust. Inst. 28, 287–293 (2000).
[CrossRef]

R. S. Barlow, J. H. Frank, “Effects of turbulence on species mass fractions in methane/air jet flames,” Proc. Combust. Inst. 27, 1087–1095 (1998).
[CrossRef]

A. Cialolo, R. Barbella, A. Tregrossi, L. Bonfanti, “Spectroscopic and compositional signatures of PAH-loaded mixtures in the soot inception region of a premixed ethylene flame,” Proc. Combust. Inst. 27, 1481–1487 (1998).

C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, R. K. Hanson, “Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications,” Proc. Combust. Inst. 29, 2725–2743 (2002).
[CrossRef]

Prog. Energy Combust. Sci. (1)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

Shock Waves (1)

J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
[CrossRef]

Other (25)

J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1998).

B. Alatas, J. A. Pinson, T. A. Litzinger, D. A. Santavicca, “A study of NO and soot evolution in a DI Diesel engine via planar imaging,” (Society of Automotive Engineers, Warrendale, Pa., 1993).

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston SI engine,” (Society of Automotive Engineers, Warrendale, Pa., 1995).

E.-J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen. “Laser diagnostics in a Diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–600 (2001).
[CrossRef]

H. Nakagawa, H. Endo, Y. Deguchi, M. Noda, H. Oikawa, T. Shimada, “NO measurement in Diesel spray flame using laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quencing cross-section,” (Sandia National Laboratories, Livermore, Calif., 1994).

K. Kohse-Höinghaus, J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, New York, 2002).

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

C. Schulz, V. Sick, J. Heinze, W. Stricker, “A new approach to laser-induced fluorescence detection of nitric oxide in high pressure flames,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3. of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 133–135.

F. Hildenbrand, C. Schulz, M. Hartmann, F. Puchner, G. Wawrschin, “In-cylinder NO-LIF imaging in a realistic GDI engine using KrF excimer laser excitation,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. G. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” in VDI Flammentag Dresden, VDI Berichte 1492 (1999), pp. 269–274.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).

N. Dam, W. L. Meerts, J. J. ter Meulen, “Laser diagnostics of nitric oxide inside a two-stroke DI Diesel engine,” in Laser Techniques Applied to Fluid Mechanics: Selected Papers from the Ninth International Symposium, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (Springer-Verlag, New York, 2000), chap. 7.
[CrossRef]

G. G. M. Stoffels, E.-J. van den Boom, C. M. I. Spaanjaars, N. Dam, W. L. Meerts, J. J. ter Meulen, J. L. C. Duff, D. J. Rickeard, “In-cylinder measurements of NO formation in a Disel engine,” (Society of Automotive Engineers, Warrendale, Pa., 1999).

T. Tanaka, M. Fujimoto, M. Tabata, “Planar measurements of NO in an S.I. engine based on laser induced fluorescence,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, R. K. Hanson. “Quantitative NO-LIF imaging in high-pressure flames,” in First International Conference on Optical and Laser Diagnostics (ICOLAD) (Institute of Physics, London, 2002), pp. 97–102.

P. Jamette, P. Desgroux, V. Ricordeau, B. Deschamps, “Laser-induced fluorescence detection of NO in the combustion chamber of an optical GDI engine with A-X(0, 1) excitation,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, R. K. Hanson. “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0, 1) excitation,” in Proceedings of the Western States Section of the Combustion Institute, Spring Meeting (Combustion Institute, Pittsburgh, Pa., 2001).

T. Lee, D.-I. Shin, J. B. Jeffries, R. K. Hanson, W. G. Bessler, C. Schulz, “Laser-induced fluorescence detection of NO in methane/air flames at pressures between 1 and 60 bar,” paper AIAA-2002-0399, presented at the Fortieth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 5–8 Jan. 2002 (American Institute of Aeronautics and Astronautics, Reston, Va., 2002).

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” (Society of Automotive Engineers, Warrendale, Pa., 2001).

V. Beushàusen, M. Knapp, A. Luczak, S. Eisenberg, P. Andresen, “Application of laser-induced fluorescence and spontaneous Raman scattering to technically applied combustion systems: four cylinder spark ignition engine and oil burning furnace,” in Laser Applications to Chemical, Biological and Environmental Analysis, Vol. 3 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 142–144.

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, P. Andresen, “Quantitative in-cylinder NO LIF measurements with a KrF excimer laser applied to a mass-production SI engine fueled with isooctane and regular gasoline,” (Society of Automotive Engineers, Warrendale, Pa., 1997).

K. Akihama, T. Fujikawa, Y. Hattori, “Laser-induced fluorescence imaging of NO in a port-fuel-injected statified-charge SI engine—correlations between NO formation region and stratified fuel distribution,” (Society of Automotive Engineers, Warrendale, Pa., 1998).

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz. “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 1989).

W. G. Bessler, C. Schulz, V. Sick, J. W. Daily. “A versatile modeling tool for nitric oxide LIF spectra,” in the Third Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2003), p. P11–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental arrangement with the laser line aligned along the spectrometer slit. ICCD, intensified CCD.

Fig. 2
Fig. 2

Examples of the nonlinear least-squares fit of simulated NO, O2, CO2, and Rayleigh (Ray.) emission spectra (represented as Voigt line shapes) for the investigated excitation (exc.) strategies at p = 60 bar, ϕ = 0.83. The arbitrary intensity units are the same in all panels. See text for details.

Fig. 3
Fig. 3

Calculated and experimental signal strengths for the 10-bar flame for the excited (exc.) and detected (det.) vibrational bands within the NO AX system.

Fig. 4
Fig. 4

Calculated signal strengths after laser and signal absorption by hot CO2 and H2O, normalized to the (0, 0) strategy signal without absorption for the Excited (exc.) and detected (det.) vibrational bands within the NO AX system.

Fig. 5
Fig. 5

Ratios of the LIF signal from 300-ppm NO and interference signals for different excitation (exc.) and detection (det.) strategies in lean and rich flames. Plotted are the LIF signal ratios NO/total (NO + O2 + CO2) as a measure of overall signal purity, and LIF signal ratios O2/NO and CO2/NO as a measure of interference signal strength. Excitation within the (0, 0), (0, 1), and (0, 2) bands is performed at 226.03, 235.87, and 247.94 nm, respectively.

Fig. 6
Fig. 6

Simulated temperature dependence of the NO LIF signal at fixed number densities or mole fractions. The simulations are performed for p = 10 bar, T = 1900 K, with the laser tuned to a constant excitation (exc.) wavelength corresponding to the NO peak at 10 bar. Solid curves, constant NO number density; dashed curves, constant NO mole fractions.

Fig. 7
Fig. 7

Simulated pressure dependence of the NO LIF signal for number density and mole fraction measurement, normalized to the 10-bar value. The laser is tuned to a constant excitation (exc.) wavelength corresponding to the NO peak at 10 bar. Note the different scales (logarithmic and linear) in the two panels.

Tables (5)

Tables Icon

Table 1 Spectroscopic Data of the Transitions Used in the NO AX Bands

Tables Icon

Table 2 Results of the Analysis for the Different Excitation and Detection Strategies: Comparison of Signal Strengths

Tables Icon

Table 3 Results of the Analysis for the Different Excitation and Detection Strategies: Calculated Transmission Properties of CO2 and H2O Exhaust for Two Practical Situations

Tables Icon

Table 4 Results of the Analysis for the Different Excitation and Detection Strategies: LIF Signal Interference Relative to the LIF Signal of 300-ppm NO at 10 Bar (60 Bar) (Percent)

Tables Icon

Table 5 Results of the Analysis for the Different Excitation and Detection Strategies: Simulated Temperature Dependence at 10 Bar

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ILIFNNO=xNO*p/kT.

Metrics