Abstract

Diode lasers with a power output superior to 100 mW are in widespread use in medical as well as research applications. However, for such diodes lasing oscillation generally occurs simultaneously in several longitudinal and transverse modes that are unsuitable for high-resolution spectroscopy. We spectrally narrow a 100-mW broad-area diode laser by first using an extended cavity and then an electrical feedback produced by a Pound-Drever-Hall stabilization on a low-finesse reference cavity. Reduction of the linewidth by more than 6 orders of magnitude is achieved (the output linewidth is narrowed from 1 THz to less than 500 kHz), making possible its use for high-resolution spectroscopy. The power and the spectral qualities of this diode laser allow us to induce quantum jumps toward the D5/2 metastable level of single Ca+ ions.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bauch, H. R. Telle, “Frequency standards and frequency measurement,” Rep. Prog. Phys. 65, 789–843 (2002).
    [CrossRef]
  2. M. Knoop, M. Vedel, F. Vedel, “Lifetime, collisional-quenching, and j-mixing measurements of the metastable 3D levels of Ca+,” Phys. Rev. A 52, 3763–3769 (1995).
    [CrossRef] [PubMed]
  3. P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, D. N. Stacey, “Measurement of the lifetime of the 3d2D5/2 state in 40Ca+,” Phys. Rev. A 62, 032503 (2000).
    [CrossRef]
  4. F. Neudel, S. Takatani, H. Reul, G. Rau, “Effect of hemolysis on oxygen and hematocrit measurements by near infrared reflectance spectroscopy,” Med. Eng. Phys. 24, 301–307 (2002).
    [CrossRef] [PubMed]
  5. For more information see http://www.appliedoptronicscorp.com .
  6. M. W. Fleming, A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 44–59 (1981).
    [CrossRef]
  7. A. Mooradian, “Cavity controlled semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1318–1324 (2000).
    [CrossRef]
  8. T. Pawletko, M. Houssin, M. Knoop, M. Vedel, F. Vedel, “High power broad-area diode laser at 794 nm injected by an external cavity laser,” Opt. Commun. 174, 223–229 (2000).
    [CrossRef]
  9. G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
    [CrossRef]
  10. R. J. Lang, D. Mehuys, D. F. Welch, L. Goldberg, “Spontaneous filamentation in broad-area diode laser amplifiers,” IEEE J. Quantum Electron. 30, 685–694 (1994).
    [CrossRef]
  11. M. Houssin, B. Fermigier, M. Desaintfuscien, “Simulation of the frequency behavior of external-cavity semiconductor lasers,” IEEE J. Quantum Electron. (to be published).
  12. P. Zorabedian, W. R. Trutna, L. S. Cutler, “Bistability in grating-tuned external-cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 1855–1987 (1987).
    [CrossRef]
  13. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. W. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  14. H. G. Dehmelt, “Proposed visual detection laser spectroscopy on single Ba+ ion,” Bull. Am. Phys. Soc. 20, 60–62 (1975).
  15. C. Champenois, M. Knoop, M. Herbane, M. Houssin, T. Kaing, M. Vedel, F. Vedel, “Characterization of a miniature Paul-Straubel trap,” Eur. Phys. J. D 15, 105–111 (2001).
    [CrossRef]
  16. B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
    [CrossRef]
  17. C. H. Shin, M. Ohtsu, “Stable semiconductor laser with a 7-Hz linewidth by an optical-electrical double-feedback technique,” Opt. Lett. 15, 1455–1457 (1990).
    [CrossRef] [PubMed]

2002 (2)

A. Bauch, H. R. Telle, “Frequency standards and frequency measurement,” Rep. Prog. Phys. 65, 789–843 (2002).
[CrossRef]

F. Neudel, S. Takatani, H. Reul, G. Rau, “Effect of hemolysis on oxygen and hematocrit measurements by near infrared reflectance spectroscopy,” Med. Eng. Phys. 24, 301–307 (2002).
[CrossRef] [PubMed]

2001 (1)

C. Champenois, M. Knoop, M. Herbane, M. Houssin, T. Kaing, M. Vedel, F. Vedel, “Characterization of a miniature Paul-Straubel trap,” Eur. Phys. J. D 15, 105–111 (2001).
[CrossRef]

2000 (3)

A. Mooradian, “Cavity controlled semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1318–1324 (2000).
[CrossRef]

T. Pawletko, M. Houssin, M. Knoop, M. Vedel, F. Vedel, “High power broad-area diode laser at 794 nm injected by an external cavity laser,” Opt. Commun. 174, 223–229 (2000).
[CrossRef]

P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, D. N. Stacey, “Measurement of the lifetime of the 3d2D5/2 state in 40Ca+,” Phys. Rev. A 62, 032503 (2000).
[CrossRef]

1999 (1)

B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

1995 (1)

M. Knoop, M. Vedel, F. Vedel, “Lifetime, collisional-quenching, and j-mixing measurements of the metastable 3D levels of Ca+,” Phys. Rev. A 52, 3763–3769 (1995).
[CrossRef] [PubMed]

1994 (1)

R. J. Lang, D. Mehuys, D. F. Welch, L. Goldberg, “Spontaneous filamentation in broad-area diode laser amplifiers,” IEEE J. Quantum Electron. 30, 685–694 (1994).
[CrossRef]

1990 (1)

1988 (1)

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
[CrossRef]

1987 (1)

P. Zorabedian, W. R. Trutna, L. S. Cutler, “Bistability in grating-tuned external-cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 1855–1987 (1987).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. W. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1981 (1)

M. W. Fleming, A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 44–59 (1981).
[CrossRef]

1975 (1)

H. G. Dehmelt, “Proposed visual detection laser spectroscopy on single Ba+ ion,” Bull. Am. Phys. Soc. 20, 60–62 (1975).

Abbas, G. L.

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
[CrossRef]

Barton, P. A.

P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, D. N. Stacey, “Measurement of the lifetime of the 3d2D5/2 state in 40Ca+,” Phys. Rev. A 62, 032503 (2000).
[CrossRef]

Bauch, A.

A. Bauch, H. R. Telle, “Frequency standards and frequency measurement,” Rep. Prog. Phys. 65, 789–843 (2002).
[CrossRef]

Bergquist, J. C.

B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Champenois, C.

C. Champenois, M. Knoop, M. Herbane, M. Houssin, T. Kaing, M. Vedel, F. Vedel, “Characterization of a miniature Paul-Straubel trap,” Eur. Phys. J. D 15, 105–111 (2001).
[CrossRef]

Chan, V. W. S.

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
[CrossRef]

Cruz, F. C.

B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Cutler, L. S.

P. Zorabedian, W. R. Trutna, L. S. Cutler, “Bistability in grating-tuned external-cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 1855–1987 (1987).
[CrossRef]

Dehmelt, H. G.

H. G. Dehmelt, “Proposed visual detection laser spectroscopy on single Ba+ ion,” Bull. Am. Phys. Soc. 20, 60–62 (1975).

Desaintfuscien, M.

M. Houssin, B. Fermigier, M. Desaintfuscien, “Simulation of the frequency behavior of external-cavity semiconductor lasers,” IEEE J. Quantum Electron. (to be published).

Donald, C. J. S.

P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, D. N. Stacey, “Measurement of the lifetime of the 3d2D5/2 state in 40Ca+,” Phys. Rev. A 62, 032503 (2000).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. W. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Fermigier, B.

M. Houssin, B. Fermigier, M. Desaintfuscien, “Simulation of the frequency behavior of external-cavity semiconductor lasers,” IEEE J. Quantum Electron. (to be published).

Fleming, M. W.

M. W. Fleming, A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 44–59 (1981).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. W. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Fujimoto, J. G.

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
[CrossRef]

Goldberg, L.

R. J. Lang, D. Mehuys, D. F. Welch, L. Goldberg, “Spontaneous filamentation in broad-area diode laser amplifiers,” IEEE J. Quantum Electron. 30, 685–694 (1994).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. W. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Herbane, M.

C. Champenois, M. Knoop, M. Herbane, M. Houssin, T. Kaing, M. Vedel, F. Vedel, “Characterization of a miniature Paul-Straubel trap,” Eur. Phys. J. D 15, 105–111 (2001).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. W. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Houssin, M.

C. Champenois, M. Knoop, M. Herbane, M. Houssin, T. Kaing, M. Vedel, F. Vedel, “Characterization of a miniature Paul-Straubel trap,” Eur. Phys. J. D 15, 105–111 (2001).
[CrossRef]

T. Pawletko, M. Houssin, M. Knoop, M. Vedel, F. Vedel, “High power broad-area diode laser at 794 nm injected by an external cavity laser,” Opt. Commun. 174, 223–229 (2000).
[CrossRef]

M. Houssin, B. Fermigier, M. Desaintfuscien, “Simulation of the frequency behavior of external-cavity semiconductor lasers,” IEEE J. Quantum Electron. (to be published).

Itano, W. M.

B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Kaing, T.

C. Champenois, M. Knoop, M. Herbane, M. Houssin, T. Kaing, M. Vedel, F. Vedel, “Characterization of a miniature Paul-Straubel trap,” Eur. Phys. J. D 15, 105–111 (2001).
[CrossRef]

Knoop, M.

C. Champenois, M. Knoop, M. Herbane, M. Houssin, T. Kaing, M. Vedel, F. Vedel, “Characterization of a miniature Paul-Straubel trap,” Eur. Phys. J. D 15, 105–111 (2001).
[CrossRef]

T. Pawletko, M. Houssin, M. Knoop, M. Vedel, F. Vedel, “High power broad-area diode laser at 794 nm injected by an external cavity laser,” Opt. Commun. 174, 223–229 (2000).
[CrossRef]

M. Knoop, M. Vedel, F. Vedel, “Lifetime, collisional-quenching, and j-mixing measurements of the metastable 3D levels of Ca+,” Phys. Rev. A 52, 3763–3769 (1995).
[CrossRef] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. W. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Lang, R. J.

R. J. Lang, D. Mehuys, D. F. Welch, L. Goldberg, “Spontaneous filamentation in broad-area diode laser amplifiers,” IEEE J. Quantum Electron. 30, 685–694 (1994).
[CrossRef]

Lucas, D. M.

P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, D. N. Stacey, “Measurement of the lifetime of the 3d2D5/2 state in 40Ca+,” Phys. Rev. A 62, 032503 (2000).
[CrossRef]

Mehuys, D.

R. J. Lang, D. Mehuys, D. F. Welch, L. Goldberg, “Spontaneous filamentation in broad-area diode laser amplifiers,” IEEE J. Quantum Electron. 30, 685–694 (1994).
[CrossRef]

Mooradian, A.

A. Mooradian, “Cavity controlled semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1318–1324 (2000).
[CrossRef]

M. W. Fleming, A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 44–59 (1981).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. W. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Neudel, F.

F. Neudel, S. Takatani, H. Reul, G. Rau, “Effect of hemolysis on oxygen and hematocrit measurements by near infrared reflectance spectroscopy,” Med. Eng. Phys. 24, 301–307 (2002).
[CrossRef] [PubMed]

Ohtsu, M.

Pawletko, T.

T. Pawletko, M. Houssin, M. Knoop, M. Vedel, F. Vedel, “High power broad-area diode laser at 794 nm injected by an external cavity laser,” Opt. Commun. 174, 223–229 (2000).
[CrossRef]

Rau, G.

F. Neudel, S. Takatani, H. Reul, G. Rau, “Effect of hemolysis on oxygen and hematocrit measurements by near infrared reflectance spectroscopy,” Med. Eng. Phys. 24, 301–307 (2002).
[CrossRef] [PubMed]

Reul, H.

F. Neudel, S. Takatani, H. Reul, G. Rau, “Effect of hemolysis on oxygen and hematocrit measurements by near infrared reflectance spectroscopy,” Med. Eng. Phys. 24, 301–307 (2002).
[CrossRef] [PubMed]

Shin, C. H.

Stacey, D. N.

P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, D. N. Stacey, “Measurement of the lifetime of the 3d2D5/2 state in 40Ca+,” Phys. Rev. A 62, 032503 (2000).
[CrossRef]

Steane, A. M.

P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, D. N. Stacey, “Measurement of the lifetime of the 3d2D5/2 state in 40Ca+,” Phys. Rev. A 62, 032503 (2000).
[CrossRef]

Stevens, D. A.

P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, D. N. Stacey, “Measurement of the lifetime of the 3d2D5/2 state in 40Ca+,” Phys. Rev. A 62, 032503 (2000).
[CrossRef]

Takatani, S.

F. Neudel, S. Takatani, H. Reul, G. Rau, “Effect of hemolysis on oxygen and hematocrit measurements by near infrared reflectance spectroscopy,” Med. Eng. Phys. 24, 301–307 (2002).
[CrossRef] [PubMed]

Telle, H. R.

A. Bauch, H. R. Telle, “Frequency standards and frequency measurement,” Rep. Prog. Phys. 65, 789–843 (2002).
[CrossRef]

Trutna, W. R.

P. Zorabedian, W. R. Trutna, L. S. Cutler, “Bistability in grating-tuned external-cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 1855–1987 (1987).
[CrossRef]

Vedel, F.

C. Champenois, M. Knoop, M. Herbane, M. Houssin, T. Kaing, M. Vedel, F. Vedel, “Characterization of a miniature Paul-Straubel trap,” Eur. Phys. J. D 15, 105–111 (2001).
[CrossRef]

T. Pawletko, M. Houssin, M. Knoop, M. Vedel, F. Vedel, “High power broad-area diode laser at 794 nm injected by an external cavity laser,” Opt. Commun. 174, 223–229 (2000).
[CrossRef]

M. Knoop, M. Vedel, F. Vedel, “Lifetime, collisional-quenching, and j-mixing measurements of the metastable 3D levels of Ca+,” Phys. Rev. A 52, 3763–3769 (1995).
[CrossRef] [PubMed]

Vedel, M.

C. Champenois, M. Knoop, M. Herbane, M. Houssin, T. Kaing, M. Vedel, F. Vedel, “Characterization of a miniature Paul-Straubel trap,” Eur. Phys. J. D 15, 105–111 (2001).
[CrossRef]

T. Pawletko, M. Houssin, M. Knoop, M. Vedel, F. Vedel, “High power broad-area diode laser at 794 nm injected by an external cavity laser,” Opt. Commun. 174, 223–229 (2000).
[CrossRef]

M. Knoop, M. Vedel, F. Vedel, “Lifetime, collisional-quenching, and j-mixing measurements of the metastable 3D levels of Ca+,” Phys. Rev. A 52, 3763–3769 (1995).
[CrossRef] [PubMed]

Ward, H. W.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. W. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Welch, D. F.

R. J. Lang, D. Mehuys, D. F. Welch, L. Goldberg, “Spontaneous filamentation in broad-area diode laser amplifiers,” IEEE J. Quantum Electron. 30, 685–694 (1994).
[CrossRef]

Yang, S.

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
[CrossRef]

Young, B. C.

B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Zorabedian, P.

P. Zorabedian, W. R. Trutna, L. S. Cutler, “Bistability in grating-tuned external-cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 1855–1987 (1987).
[CrossRef]

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. W. Ward, “Laser phase and frequency stabilisation using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Bull. Am. Phys. Soc. (1)

H. G. Dehmelt, “Proposed visual detection laser spectroscopy on single Ba+ ion,” Bull. Am. Phys. Soc. 20, 60–62 (1975).

Eur. Phys. J. D (1)

C. Champenois, M. Knoop, M. Herbane, M. Houssin, T. Kaing, M. Vedel, F. Vedel, “Characterization of a miniature Paul-Straubel trap,” Eur. Phys. J. D 15, 105–111 (2001).
[CrossRef]

IEEE J. Quantum Electron. (4)

P. Zorabedian, W. R. Trutna, L. S. Cutler, “Bistability in grating-tuned external-cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 1855–1987 (1987).
[CrossRef]

M. W. Fleming, A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 44–59 (1981).
[CrossRef]

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
[CrossRef]

R. J. Lang, D. Mehuys, D. F. Welch, L. Goldberg, “Spontaneous filamentation in broad-area diode laser amplifiers,” IEEE J. Quantum Electron. 30, 685–694 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Mooradian, “Cavity controlled semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1318–1324 (2000).
[CrossRef]

Med. Eng. Phys. (1)

F. Neudel, S. Takatani, H. Reul, G. Rau, “Effect of hemolysis on oxygen and hematocrit measurements by near infrared reflectance spectroscopy,” Med. Eng. Phys. 24, 301–307 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

T. Pawletko, M. Houssin, M. Knoop, M. Vedel, F. Vedel, “High power broad-area diode laser at 794 nm injected by an external cavity laser,” Opt. Commun. 174, 223–229 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (2)

M. Knoop, M. Vedel, F. Vedel, “Lifetime, collisional-quenching, and j-mixing measurements of the metastable 3D levels of Ca+,” Phys. Rev. A 52, 3763–3769 (1995).
[CrossRef] [PubMed]

P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, D. N. Stacey, “Measurement of the lifetime of the 3d2D5/2 state in 40Ca+,” Phys. Rev. A 62, 032503 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Rep. Prog. Phys. (1)

A. Bauch, H. R. Telle, “Frequency standards and frequency measurement,” Rep. Prog. Phys. 65, 789–843 (2002).
[CrossRef]

Other (2)

For more information see http://www.appliedoptronicscorp.com .

M. Houssin, B. Fermigier, M. Desaintfuscien, “Simulation of the frequency behavior of external-cavity semiconductor lasers,” IEEE J. Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Measured current threshold (Ith) normalized to the free-running diode threshold (Ith0) when the diode is placed in an extended cavity versus the vertical position of the collimating lens. A 100-µm displacement of the lens corresponds to a variation of 0.9° of the injection angle of the feedback beam. (These operating conditions did not allow us to reach optimal threshold current reductions.)

Fig. 2
Fig. 2

Output laser power versus the laser injection current (normalized to the threshold current Ith) when the diode was placed into an extended cavity.

Fig. 3
Fig. 3

Far-field profiles of the extended-cavity emission for different slit sizes placed vertically, parallel to the junction inside the cavity. Intensity distribution (a) normal to the junction plane and (b) in the junction plane. Bottom curve, without a slit; middle curve, with a 3-mm-wide slit; top curve, with a 2-mm-wide slit.

Fig. 4
Fig. 4

Optical setup for frequency stabilization: ECL, extended-cavity laser; EOM, electro-optic modulator.

Fig. 5
Fig. 5

Transmitted intensity through the supercavity versus the frequency offset between a resonant frequency of the supercavity and the laser frequency when (a) the laser frequency is unlocked and (b) the laser frequency is locked to a resonant frequency of an F = 300 cavity.

Fig. 6
Fig. 6

Quantum jumps driven by the diode laser observed on two ions stored in a Paul-Straubel trap. The upper level corresponds to the fluorescence of two ions at 397 nm, the lower level is the fluorescence of only one of the two ions. The line at approximately 350 counts/s corresponds to stray light.

Metrics