Abstract

We describe single-frequency operation of a diode-pumped Nd:YLF laser in the range 1311.9–1317.2 nm. It can be used for the interrogation of the clock transition in calcium (1314.0 nm) or spectroscopy in hydrogen and metastable singly ionized helium (1312.6 nm). By using a twisted-mode cavity, we have obtained output powers of 830 and 970 mW at 1312.6 and 1314.0 nm, respectively, in a single longitudinal mode.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, C. Salomon, “Quantum projection noise in an atomic fountain: a high stability cesium frequency standard,” Phys. Rev. Lett. 82, 4619–4622 (1999).
    [CrossRef]
  2. R. W. Barger, “Influence of second-order Doppler effect on optical Ramsey fringe profiles,” Opt. Lett. 6, 145–147 (1981).
    [CrossRef] [PubMed]
  3. C. W. Oates, F. Bondu, R. W. Fox, L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: subkilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
    [CrossRef]
  4. Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
    [CrossRef] [PubMed]
  5. S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.
    [CrossRef]
  6. A. van Wijngaarden, J. Kwela, G. W. F. Drake, “Measurement of the n = 2 Lamb shift in the He+ by the anisotropy method,” Phys. Rev. A 43, 3325–3342 (1991).
    [CrossRef] [PubMed]
  7. A. van Wijngaarden, F. Holuj, G. W. F. Drake, “Lamb shift in He+: resolution of a discrepancy between theory and experiment,” Phys. Rev. A 63, 012505(1)–012505(11) (2000).
    [CrossRef]
  8. M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
    [CrossRef] [PubMed]
  9. S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, D. N. Stacey, “High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift,” Phys. Rev. Lett. 76, 384–387 (1996).
    [CrossRef] [PubMed]
  10. L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
    [CrossRef]
  11. Y. Louyer, F. Balembois, T. Badr, M. D. Plimmer, P. Juncar, M. E. Himbert, P. Georges, “Diode-pumped solid-state lasers for a silver atom optical clock,” in Poster Presentation Abstracts of the 18th International Conference on Atomic Physics, H. R. Sadeghpour, D. E. Pritchard, E. J. Heller, eds. (World Scientific, Singapore, 2002), p. 145.
  12. Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
    [CrossRef]
  13. G. Uhlenberg, J. Dirscherl, H. Walther, “Magneto-optical trapping of silver atoms,” Phys. Rev. A 62, 0634041–0634044 (2000).
    [CrossRef]
  14. www.polysci.com . This website, owned by Northrop Grumman Space Technology Synoptics (formerly Poly-Scientific), includes absorption spectra for a number of common laser crystals.
  15. V. Evtuhov, A. Siegman, “A twisted-mode technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt. 4, 142 (1965).
    [CrossRef]
  16. D. A. Dragaert, “Single-longitudinal-mode Nd:YAG laser,” in Digest of Technical Papers of the IEEE Conference on Laser Engineering and Applications, (Optical Society of America, Washington, D.C., 1971), p. 42.
  17. K. Wallmeroth, P. Peuser, “High power, CW single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
    [CrossRef]
  18. M. W. Hamilton, “An introduction to stabilized lasers,” Contemp. Phys. 30, 21–33 (1989).
    [CrossRef]

2003 (1)

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

2001 (1)

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

2000 (3)

A. van Wijngaarden, F. Holuj, G. W. F. Drake, “Lamb shift in He+: resolution of a discrepancy between theory and experiment,” Phys. Rev. A 63, 012505(1)–012505(11) (2000).
[CrossRef]

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

G. Uhlenberg, J. Dirscherl, H. Walther, “Magneto-optical trapping of silver atoms,” Phys. Rev. A 62, 0634041–0634044 (2000).
[CrossRef]

1999 (3)

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, C. Salomon, “Quantum projection noise in an atomic fountain: a high stability cesium frequency standard,” Phys. Rev. Lett. 82, 4619–4622 (1999).
[CrossRef]

C. W. Oates, F. Bondu, R. W. Fox, L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: subkilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

1996 (1)

S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, D. N. Stacey, “High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift,” Phys. Rev. Lett. 76, 384–387 (1996).
[CrossRef] [PubMed]

1991 (1)

A. van Wijngaarden, J. Kwela, G. W. F. Drake, “Measurement of the n = 2 Lamb shift in the He+ by the anisotropy method,” Phys. Rev. A 43, 3325–3342 (1991).
[CrossRef] [PubMed]

1989 (1)

M. W. Hamilton, “An introduction to stabilized lasers,” Contemp. Phys. 30, 21–33 (1989).
[CrossRef]

1988 (1)

K. Wallmeroth, P. Peuser, “High power, CW single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
[CrossRef]

1981 (1)

1965 (1)

Abgrall, M.

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

Badr, T.

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Y. Louyer, F. Balembois, T. Badr, M. D. Plimmer, P. Juncar, M. E. Himbert, P. Georges, “Diode-pumped solid-state lasers for a silver atom optical clock,” in Poster Presentation Abstracts of the 18th International Conference on Atomic Physics, H. R. Sadeghpour, D. E. Pritchard, E. J. Heller, eds. (World Scientific, Singapore, 2002), p. 145.

Balembois, F.

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Y. Louyer, F. Balembois, T. Badr, M. D. Plimmer, P. Juncar, M. E. Himbert, P. Georges, “Diode-pumped solid-state lasers for a silver atom optical clock,” in Poster Presentation Abstracts of the 18th International Conference on Atomic Physics, H. R. Sadeghpour, D. E. Pritchard, E. J. Heller, eds. (World Scientific, Singapore, 2002), p. 145.

Barger, R. W.

Bergquist, J. C.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Biraben, F.

S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, D. N. Stacey, “High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift,” Phys. Rev. Lett. 76, 384–387 (1996).
[CrossRef] [PubMed]

Bondu, F.

C. W. Oates, F. Bondu, R. W. Fox, L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: subkilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

Boshier, M. G.

S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.
[CrossRef]

Bourzeix, S.

S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, D. N. Stacey, “High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift,” Phys. Rev. Lett. 76, 384–387 (1996).
[CrossRef] [PubMed]

Burrows, S. A.

S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.
[CrossRef]

Chang, S.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, C. Salomon, “Quantum projection noise in an atomic fountain: a high stability cesium frequency standard,” Phys. Rev. Lett. 82, 4619–4622 (1999).
[CrossRef]

Clairon, A.

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, C. Salomon, “Quantum projection noise in an atomic fountain: a high stability cesium frequency standard,” Phys. Rev. Lett. 82, 4619–4622 (1999).
[CrossRef]

Curtis, E. A.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

de Beauvoir, B.

S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, D. N. Stacey, “High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift,” Phys. Rev. Lett. 76, 384–387 (1996).
[CrossRef] [PubMed]

de Tomasi, F.

S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, D. N. Stacey, “High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift,” Phys. Rev. Lett. 76, 384–387 (1996).
[CrossRef] [PubMed]

Diddams, S. A.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Dirscherl, J.

G. Uhlenberg, J. Dirscherl, H. Walther, “Magneto-optical trapping of silver atoms,” Phys. Rev. A 62, 0634041–0634044 (2000).
[CrossRef]

Dragaert, D. A.

D. A. Dragaert, “Single-longitudinal-mode Nd:YAG laser,” in Digest of Technical Papers of the IEEE Conference on Laser Engineering and Applications, (Optical Society of America, Washington, D.C., 1971), p. 42.

Drake, G. W. F.

A. van Wijngaarden, F. Holuj, G. W. F. Drake, “Lamb shift in He+: resolution of a discrepancy between theory and experiment,” Phys. Rev. A 63, 012505(1)–012505(11) (2000).
[CrossRef]

A. van Wijngaarden, J. Kwela, G. W. F. Drake, “Measurement of the n = 2 Lamb shift in the He+ by the anisotropy method,” Phys. Rev. A 43, 3325–3342 (1991).
[CrossRef] [PubMed]

Drullinger, R. E.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Evtuhov, V.

Fornasiero, L.

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Fox, R. W.

C. W. Oates, F. Bondu, R. W. Fox, L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: subkilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

Georges, P.

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Y. Louyer, F. Balembois, T. Badr, M. D. Plimmer, P. Juncar, M. E. Himbert, P. Georges, “Diode-pumped solid-state lasers for a silver atom optical clock,” in Poster Presentation Abstracts of the 18th International Conference on Atomic Physics, H. R. Sadeghpour, D. E. Pritchard, E. J. Heller, eds. (World Scientific, Singapore, 2002), p. 145.

Guérandel, S.

S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.
[CrossRef]

Hamilton, M. W.

M. W. Hamilton, “An introduction to stabilized lasers,” Contemp. Phys. 30, 21–33 (1989).
[CrossRef]

Hänsch, T. W.

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

Himbert, M. E.

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Y. Louyer, F. Balembois, T. Badr, M. D. Plimmer, P. Juncar, M. E. Himbert, P. Georges, “Diode-pumped solid-state lasers for a silver atom optical clock,” in Poster Presentation Abstracts of the 18th International Conference on Atomic Physics, H. R. Sadeghpour, D. E. Pritchard, E. J. Heller, eds. (World Scientific, Singapore, 2002), p. 145.

Hinds, E. A.

S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.
[CrossRef]

Hollberg, L.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

C. W. Oates, F. Bondu, R. W. Fox, L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: subkilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

Holuj, F.

A. van Wijngaarden, F. Holuj, G. W. F. Drake, “Lamb shift in He+: resolution of a discrepancy between theory and experiment,” Phys. Rev. A 63, 012505(1)–012505(11) (2000).
[CrossRef]

Holzwarth, T.

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

Huber, G.

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Itano, W. M.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Julien, L.

S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, D. N. Stacey, “High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift,” Phys. Rev. Lett. 76, 384–387 (1996).
[CrossRef] [PubMed]

Juncar, P.

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Y. Louyer, F. Balembois, T. Badr, M. D. Plimmer, P. Juncar, M. E. Himbert, P. Georges, “Diode-pumped solid-state lasers for a silver atom optical clock,” in Poster Presentation Abstracts of the 18th International Conference on Atomic Physics, H. R. Sadeghpour, D. E. Pritchard, E. J. Heller, eds. (World Scientific, Singapore, 2002), p. 145.

Kellner, T.

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Kück, S.

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Kwela, J.

A. van Wijngaarden, J. Kwela, G. W. F. Drake, “Measurement of the n = 2 Lamb shift in the He+ by the anisotropy method,” Phys. Rev. A 43, 3325–3342 (1991).
[CrossRef] [PubMed]

Laurent, P.

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

Laurent, Ph.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, C. Salomon, “Quantum projection noise in an atomic fountain: a high stability cesium frequency standard,” Phys. Rev. Lett. 82, 4619–4622 (1999).
[CrossRef]

Lee, W. D.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Lemonde, P.

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, C. Salomon, “Quantum projection noise in an atomic fountain: a high stability cesium frequency standard,” Phys. Rev. Lett. 82, 4619–4622 (1999).
[CrossRef]

Lison, F.

S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.
[CrossRef]

Louyer, Y.

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Y. Louyer, F. Balembois, T. Badr, M. D. Plimmer, P. Juncar, M. E. Himbert, P. Georges, “Diode-pumped solid-state lasers for a silver atom optical clock,” in Poster Presentation Abstracts of the 18th International Conference on Atomic Physics, H. R. Sadeghpour, D. E. Pritchard, E. J. Heller, eds. (World Scientific, Singapore, 2002), p. 145.

Luiten, A. N.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, C. Salomon, “Quantum projection noise in an atomic fountain: a high stability cesium frequency standard,” Phys. Rev. Lett. 82, 4619–4622 (1999).
[CrossRef]

Mann, A. G.

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, C. Salomon, “Quantum projection noise in an atomic fountain: a high stability cesium frequency standard,” Phys. Rev. Lett. 82, 4619–4622 (1999).
[CrossRef]

Meyn, J. P.

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Möbert, P. E.-A.

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Nez, F.

S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, D. N. Stacey, “High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift,” Phys. Rev. Lett. 76, 384–387 (1996).
[CrossRef] [PubMed]

Niering, M.

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

Oates, C. W.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

C. W. Oates, F. Bondu, R. W. Fox, L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: subkilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

Peuser, P.

K. Wallmeroth, P. Peuser, “High power, CW single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
[CrossRef]

Plimmer, M. D.

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, D. N. Stacey, “High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift,” Phys. Rev. Lett. 76, 384–387 (1996).
[CrossRef] [PubMed]

Y. Louyer, F. Balembois, T. Badr, M. D. Plimmer, P. Juncar, M. E. Himbert, P. Georges, “Diode-pumped solid-state lasers for a silver atom optical clock,” in Poster Presentation Abstracts of the 18th International Conference on Atomic Physics, H. R. Sadeghpour, D. E. Pritchard, E. J. Heller, eds. (World Scientific, Singapore, 2002), p. 145.

Pokasov, P.

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

Reichert, J.

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

Salomon, C.

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, C. Salomon, “Quantum projection noise in an atomic fountain: a high stability cesium frequency standard,” Phys. Rev. Lett. 82, 4619–4622 (1999).
[CrossRef]

Santarelli, G.

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, C. Salomon, “Quantum projection noise in an atomic fountain: a high stability cesium frequency standard,” Phys. Rev. Lett. 82, 4619–4622 (1999).
[CrossRef]

Siegman, A.

Stacey, D. N.

S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, D. N. Stacey, “High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift,” Phys. Rev. Lett. 76, 384–387 (1996).
[CrossRef] [PubMed]

Udem, T.

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

Udem, Th.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Uhlenberg, G.

G. Uhlenberg, J. Dirscherl, H. Walther, “Magneto-optical trapping of silver atoms,” Phys. Rev. A 62, 0634041–0634044 (2000).
[CrossRef]

van Wijngaarden, A.

A. van Wijngaarden, F. Holuj, G. W. F. Drake, “Lamb shift in He+: resolution of a discrepancy between theory and experiment,” Phys. Rev. A 63, 012505(1)–012505(11) (2000).
[CrossRef]

A. van Wijngaarden, J. Kwela, G. W. F. Drake, “Measurement of the n = 2 Lamb shift in the He+ by the anisotropy method,” Phys. Rev. A 43, 3325–3342 (1991).
[CrossRef] [PubMed]

Vogel, K. R.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Wallmeroth, K.

K. Wallmeroth, P. Peuser, “High power, CW single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
[CrossRef]

Walther, H.

G. Uhlenberg, J. Dirscherl, H. Walther, “Magneto-optical trapping of silver atoms,” Phys. Rev. A 62, 0634041–0634044 (2000).
[CrossRef]

Weitz, M.

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Contemp. Phys. (1)

M. W. Hamilton, “An introduction to stabilized lasers,” Contemp. Phys. 30, 21–33 (1989).
[CrossRef]

Electron. Lett. (1)

K. Wallmeroth, P. Peuser, “High power, CW single-frequency, TEM00, diode-laser-pumped Nd:YAG laser,” Electron. Lett. 24, 1086–1088 (1988).
[CrossRef]

Eur. Phys. J. D (1)

C. W. Oates, F. Bondu, R. W. Fox, L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: subkilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

Opt. Commun. (1)

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (3)

G. Uhlenberg, J. Dirscherl, H. Walther, “Magneto-optical trapping of silver atoms,” Phys. Rev. A 62, 0634041–0634044 (2000).
[CrossRef]

A. van Wijngaarden, J. Kwela, G. W. F. Drake, “Measurement of the n = 2 Lamb shift in the He+ by the anisotropy method,” Phys. Rev. A 43, 3325–3342 (1991).
[CrossRef] [PubMed]

A. van Wijngaarden, F. Holuj, G. W. F. Drake, “Lamb shift in He+: resolution of a discrepancy between theory and experiment,” Phys. Rev. A 63, 012505(1)–012505(11) (2000).
[CrossRef]

Phys. Rev. Lett. (4)

M. Niering, T. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
[CrossRef] [PubMed]

S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben, D. N. Stacey, “High resolution spectroscopy of the hydrogen atom: determination of the 1S Lamb shift,” Phys. Rev. Lett. 76, 384–387 (1996).
[CrossRef] [PubMed]

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, L. Hollberg, “Absolute frequency measurement of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, C. Salomon, “Quantum projection noise in an atomic fountain: a high stability cesium frequency standard,” Phys. Rev. Lett. 82, 4619–4622 (1999).
[CrossRef]

Other (4)

D. A. Dragaert, “Single-longitudinal-mode Nd:YAG laser,” in Digest of Technical Papers of the IEEE Conference on Laser Engineering and Applications, (Optical Society of America, Washington, D.C., 1971), p. 42.

www.polysci.com . This website, owned by Northrop Grumman Space Technology Synoptics (formerly Poly-Scientific), includes absorption spectra for a number of common laser crystals.

S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.
[CrossRef]

Y. Louyer, F. Balembois, T. Badr, M. D. Plimmer, P. Juncar, M. E. Himbert, P. Georges, “Diode-pumped solid-state lasers for a silver atom optical clock,” in Poster Presentation Abstracts of the 18th International Conference on Atomic Physics, H. R. Sadeghpour, D. E. Pritchard, E. J. Heller, eds. (World Scientific, Singapore, 2002), p. 145.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Variation of the emission cross section of Nd:YLF around 1.3 µm from Ref. 10. (© Springer Verlag 1999, reproduced by permission of the authors). The dependence of the cross section on the laser polarization enables one to select either the band near 1313 nm (our case) or the band near 1322 nm.

Fig. 2
Fig. 2

Absorption spectra for Nd:YLF.14 Data © Northrop Grumman Space Technology Synoptics, used by permission thereof. In our experiments we pumped on the 806-nm line because of the unavailability at the time of powerful diode lasers at 797 nm. Our own crystal was Nd doped at 0.7%, close to the value shown in the figure.

Fig. 3
Fig. 3

Twisted-mode folded cavity for a diode-pumped c-axis Nd:YLF laser. X, c-axis Nd:YLF crystal; FCD, fiber-coupled diode; λ/4, low-order quarter-wave plates at 1.3 µm tilted at 10° to avoid interference effects; GP, glass plate inclined at Brewster’s angle; TE, thin etalon; OC, output coupler (T = 2%). Here f1 = 60 mm, f2 = 80 mm, d1 = 280 mm, d2 = 300 mm, R1 = 100 mm, and R2 = 500 mm. The Brewster plate assures linear polarization. The laser ran single mode even without the thin etalon used only for frequency tuning.

Fig. 4
Fig. 4

Tuning curve of the twisted-mode cavity c-axis Nd:YLF laser around 1314.0 nm for an absorbed pump power of 12 W at 806 nm.

Fig. 5
Fig. 5

Single-frequency output power of the twisted-mode cavity c-axis Nd:YLF laser at 1312.6 and 1314.0 nm as a function of absorbed pump power at 806 nm.

Fig. 6
Fig. 6

Oscilloscope trace of transmission through a confocal Fabry-Perot interferometer (free spectral range 750 MHz) confirming single-frequency operation of the twisted-mode cavity c-axis Nd:YLF laser at 1312.6 nm.

Metrics