Abstract

Multimode effects in the free-propagation regions (FPRs) of an arrayed-waveguide grating (AWG) demultiplexer based on silicon-on-insulator are considered. Some undesired multimode effects, such as the increase of the insertion loss and the cross talk, are studied by use of a method of three-dimensional guided-mode propagation analysis. It is found that the multimode effects for the edge channels are more serious than those for the central channel. For an AWG demultiplexer with a small channel number, the multimode effects can be minimized by choosing appropriate FPR parameters such as the length and the thickness of the FPR. The coupling coefficient between the FPR and an arrayed waveguide is sensitive to the thickness of the FPR.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Smit, C. V. Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
    [CrossRef]
  2. M. R. Paiam, R. I. MacDonald, “Design of phased-array wavelength division multiplexers using multimode interference couplers,” Appl. Opt. 36, 5097–5108 (1997).
    [CrossRef] [PubMed]
  3. C. K. Ndaler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407–1412 (1999).
    [CrossRef]
  4. M. Zirngibl, C. Dragone, C. H. Joyner, “Demonstration of a 15 × 15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4, 1250–1253 (1992).
    [CrossRef]
  5. Y. Hida, Y. Innoue, S. Imamura, “Polymeric arrayed-waveguide grating multiplexer operating around 1.3 µm,” Electron. Lett. 30, 959–960 (1994).
    [CrossRef]
  6. U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
    [CrossRef]
  7. P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
    [CrossRef]
  8. S. Lvescan, A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol. 16, 1851–1853 (1998).
    [CrossRef]
  9. S. R. Park, B. O, S. G. Lee, E. H. Lee, “Control of multimode effect on an arrayed waveguide grating device,” in Optical Fiber and Planar Waveguide Technology II, S. Jian, S. Shen, K. Okamoto, eds., Proc. SPIE4904, 345–353 (2002).
    [CrossRef]
  10. L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [CrossRef]
  11. M. Bachmann, P. A. Besse, H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt. 33, 3905–3911 (1994).
    [CrossRef] [PubMed]
  12. Z. Shi, S. He, “A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer,” IEEE J. Sel. Top. Quantum Electron. 8, 1179–1185 (2002).
    [CrossRef]
  13. K. Takada, T. Tanaka, M. Abo, T. Yanagisawa, M. Ishii, K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60–61 (2000).
    [CrossRef]

2002 (1)

Z. Shi, S. He, “A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer,” IEEE J. Sel. Top. Quantum Electron. 8, 1179–1185 (2002).
[CrossRef]

2000 (1)

K. Takada, T. Tanaka, M. Abo, T. Yanagisawa, M. Ishii, K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60–61 (2000).
[CrossRef]

1999 (1)

C. K. Ndaler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407–1412 (1999).
[CrossRef]

1998 (1)

1997 (2)

M. R. Paiam, R. I. MacDonald, “Design of phased-array wavelength division multiplexers using multimode interference couplers,” Appl. Opt. 36, 5097–5108 (1997).
[CrossRef] [PubMed]

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[CrossRef]

1996 (2)

M. K. Smit, C. V. Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
[CrossRef]

1995 (1)

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

1994 (2)

M. Bachmann, P. A. Besse, H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt. 33, 3905–3911 (1994).
[CrossRef] [PubMed]

Y. Hida, Y. Innoue, S. Imamura, “Polymeric arrayed-waveguide grating multiplexer operating around 1.3 µm,” Electron. Lett. 30, 959–960 (1994).
[CrossRef]

1992 (1)

M. Zirngibl, C. Dragone, C. H. Joyner, “Demonstration of a 15 × 15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4, 1250–1253 (1992).
[CrossRef]

Abo, M.

K. Takada, T. Tanaka, M. Abo, T. Yanagisawa, M. Ishii, K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60–61 (2000).
[CrossRef]

Arndt, F.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
[CrossRef]

Bachmann, M.

Besse, P. A.

Coppinger, F.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[CrossRef]

Dam, C. V.

M. K. Smit, C. V. Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

Dragone, C.

M. Zirngibl, C. Dragone, C. H. Joyner, “Demonstration of a 15 × 15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4, 1250–1253 (1992).
[CrossRef]

Fischer, U.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
[CrossRef]

He, S.

Z. Shi, S. He, “A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer,” IEEE J. Sel. Top. Quantum Electron. 8, 1179–1185 (2002).
[CrossRef]

Hida, Y.

Y. Hida, Y. Innoue, S. Imamura, “Polymeric arrayed-waveguide grating multiplexer operating around 1.3 µm,” Electron. Lett. 30, 959–960 (1994).
[CrossRef]

Hunziker, W.

C. K. Ndaler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407–1412 (1999).
[CrossRef]

Imamura, S.

Y. Hida, Y. Innoue, S. Imamura, “Polymeric arrayed-waveguide grating multiplexer operating around 1.3 µm,” Electron. Lett. 30, 959–960 (1994).
[CrossRef]

Innoue, Y.

Y. Hida, Y. Innoue, S. Imamura, “Polymeric arrayed-waveguide grating multiplexer operating around 1.3 µm,” Electron. Lett. 30, 959–960 (1994).
[CrossRef]

Ishii, M.

K. Takada, T. Tanaka, M. Abo, T. Yanagisawa, M. Ishii, K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60–61 (2000).
[CrossRef]

Jalali, B.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[CrossRef]

Joyner, C. H.

M. Zirngibl, C. Dragone, C. H. Joyner, “Demonstration of a 15 × 15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4, 1250–1253 (1992).
[CrossRef]

Kropp, J.-R.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
[CrossRef]

Lanker, M.

C. K. Ndaler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407–1412 (1999).
[CrossRef]

Lee, E. H.

S. R. Park, B. O, S. G. Lee, E. H. Lee, “Control of multimode effect on an arrayed waveguide grating device,” in Optical Fiber and Planar Waveguide Technology II, S. Jian, S. Shen, K. Okamoto, eds., Proc. SPIE4904, 345–353 (2002).
[CrossRef]

Lee, S. G.

S. R. Park, B. O, S. G. Lee, E. H. Lee, “Control of multimode effect on an arrayed waveguide grating device,” in Optical Fiber and Planar Waveguide Technology II, S. Jian, S. Shen, K. Okamoto, eds., Proc. SPIE4904, 345–353 (2002).
[CrossRef]

Lvescan, S.

MacDonald, R. I.

Melchior, H.

C. K. Ndaler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407–1412 (1999).
[CrossRef]

M. Bachmann, P. A. Besse, H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt. 33, 3905–3911 (1994).
[CrossRef] [PubMed]

Ndaler, C. K.

C. K. Ndaler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407–1412 (1999).
[CrossRef]

O, B.

S. R. Park, B. O, S. G. Lee, E. H. Lee, “Control of multimode effect on an arrayed waveguide grating device,” in Optical Fiber and Planar Waveguide Technology II, S. Jian, S. Shen, K. Okamoto, eds., Proc. SPIE4904, 345–353 (2002).
[CrossRef]

Okamoto, K.

K. Takada, T. Tanaka, M. Abo, T. Yanagisawa, M. Ishii, K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60–61 (2000).
[CrossRef]

Paiam, M. R.

Park, S. R.

S. R. Park, B. O, S. G. Lee, E. H. Lee, “Control of multimode effect on an arrayed waveguide grating device,” in Optical Fiber and Planar Waveguide Technology II, S. Jian, S. Shen, K. Okamoto, eds., Proc. SPIE4904, 345–353 (2002).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Petermann, K.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
[CrossRef]

Shi, Z.

Z. Shi, S. He, “A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer,” IEEE J. Sel. Top. Quantum Electron. 8, 1179–1185 (2002).
[CrossRef]

Smit, M. K.

M. K. Smit, C. V. Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

Soldano, L. B.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Takada, K.

K. Takada, T. Tanaka, M. Abo, T. Yanagisawa, M. Ishii, K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60–61 (2000).
[CrossRef]

Tanaka, T.

K. Takada, T. Tanaka, M. Abo, T. Yanagisawa, M. Ishii, K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60–61 (2000).
[CrossRef]

Trinh, P. D.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[CrossRef]

Vonsovici, A.

Wildermuth, E. K.

C. K. Ndaler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407–1412 (1999).
[CrossRef]

Yanagisawa, T.

K. Takada, T. Tanaka, M. Abo, T. Yanagisawa, M. Ishii, K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60–61 (2000).
[CrossRef]

Yegnanarayanan, S.

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[CrossRef]

Zinke, T.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
[CrossRef]

Zirngibl, M.

M. Zirngibl, C. Dragone, C. H. Joyner, “Demonstration of a 15 × 15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4, 1250–1253 (1992).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (2)

K. Takada, T. Tanaka, M. Abo, T. Yanagisawa, M. Ishii, K. Okamoto, “Beam-adjustment-free crosstalk reduction in 10 GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask,” Electron. Lett. 36, 60–61 (2000).
[CrossRef]

Y. Hida, Y. Innoue, S. Imamura, “Polymeric arrayed-waveguide grating multiplexer operating around 1.3 µm,” Electron. Lett. 30, 959–960 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

C. K. Ndaler, E. K. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407–1412 (1999).
[CrossRef]

M. K. Smit, C. V. Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

Z. Shi, S. He, “A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer,” IEEE J. Sel. Top. Quantum Electron. 8, 1179–1185 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Zirngibl, C. Dragone, C. H. Joyner, “Demonstration of a 15 × 15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4, 1250–1253 (1992).
[CrossRef]

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, K. Petermann, “0.1 dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8, 647–648 (1996).
[CrossRef]

P. D. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
[CrossRef]

J. Lightwave Technol. (2)

S. Lvescan, A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol. 16, 1851–1853 (1998).
[CrossRef]

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Other (1)

S. R. Park, B. O, S. G. Lee, E. H. Lee, “Control of multimode effect on an arrayed waveguide grating device,” in Optical Fiber and Planar Waveguide Technology II, S. Jian, S. Shen, K. Okamoto, eds., Proc. SPIE4904, 345–353 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic configuration. (a) The structure of an AWG demultiplexer. (b) The enlarged 3D view at the interface of the input waveguide and the first FPR. IWG, input waveguide; OWG, output waveguide.

Fig. 2
Fig. 2

Cross section of the rib SOI waveguide.

Fig. 3
Fig. 3

Field distribution in the cross-sectional plane x = 0 (starting from z = 12,600 µm) of the FPR. The left part shows the modal field distribution of the input rib SOI waveguide.

Fig. 4
Fig. 4

Coupling coefficient η as the length of the FPR varies for three different values of the FPR thickness h2.

Fig. 5
Fig. 5

Intensity distribution at the interface between the first FPR and the arrayed waveguides when the length of the FPR increases from LFPRopt to LFPRopt + Lπ. (a) LFPR = 12,600 µm, (b) LFPR = 12,640 µm, and (c) LFPR = 12,680 µm.

Fig. 6
Fig. 6

Spectral responses for the central channel of the AWG demultiplexer when the length of the FPR decreases from 12,680 µm to the optimal length (12,600 µm).

Fig. 7
Fig. 7

Spectral response for the edge channel (i.e., the 20th channel) of the designed AWG demultiplexer.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Einx, y=q=0M-1 aqxuqsy,
aqx=-+ Einx, yuqsydy.
Ex, y, z=q=0M-1 aqx, zuqsy.
aqx, z=jλ0/nqs1/2-+ aqx1, 0exp-jnqsk0rr×cos θin+cos θdr2dx1,
aqx, z=jλ0/nqs1/2-+ aqx1, 0×exp-jnqsk0rrdx1.
Ēiny=q=0M-1 cquqsy,
Ēy, L=q=0M-1 cquqyexpjωt-βqL,
Ēy, L=q=0M-1 cquqyexpjβ0-βqL.
βqk0n2-q+12πλ04n2We2,
β0-βqqq+2πλ04n2We2=qq+2π3Lπ,
Ēy, L=q=0M-1 cquqyexpj qq+2π3Lπ L.
Ēy, L=c0u0y+c1u1yexpj LLπ π.
LFPRopt=P2Lπ=2P 4n2h2023πλ0,
P2 4n2h2023πλ0=P+p2 4n2h20-Δh023πλ0,
Δh0=±h201-PP±11/2.
n0gΔL+nqsdg sin θq=mλ,
n0sdg sin θ0-nqsdg sin θq=0.
n0snqsθqθ0.
Δθq=θ0n0s-nqsnqs.
ΔθqN=NΔθchn0s-nqsnqs.
qN=1nqsqq+2λ028n2NWe2.
qNqq+2λ028n22Nh22.
1N38 Nλ0/n2h22.
M=INTn22-n32k0h2-arctann32-n12/n22-n32/π,
M=INTn22-n32k0h2/π.
M-1NM2-1λ028n2n3Nh22.
M-1Nn2n3-n3n2N2.

Metrics