Abstract

We propose a concept for InGaAsP-InP 1.55-µm lasers integrated with spot-size converters based on modal interference between the modes of the structure formed by an active waveguide and an underlying fiber-matched antiresonant reflecting optical waveguide. Simulation results show that the spot-size converters exhibit low transformation loss, and narrowed far-field emission patterns (10° × 20°) and reduce the coupling loss to standard single-mode fibers from 8 to 2.6 dB over lengths approximately 200 µm shorter than the adiabatic concept. A tolerant design to fabrication variations is also proposed, which could be realized by standard processing techniques.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Moerman, P. Van Daele, P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3, 1308–1320 (1997).
    [CrossRef]
  2. T. Alder, A. Stöhr, R. Heinzelmann, D. Jäger, “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photon. Technol. Lett. 12, 1016–1018 (2000).
    [CrossRef]
  3. S. S. Saini, F. G. Johnson, D. R. Stone, H. Shen, W. Zhou, M. Dagenais, “Passive active resonant coupler (PARC) platform with mode expander,” IEEE Photon. Technol. Lett. 12, 1025–1027 (2000).
    [CrossRef]
  4. G. A. Vawter, A. T. Sullivan, J. R. Wendt, R. E. Smith, H. Q. Hou, J. F. Klem, “Tapered rib adiabatic following fiber couplers in etched GaAs materials for monolithic spot-size transformation,” IEEE J. Sel. Top. Quantum Electron. 3, 1361–1371 (1997).
    [CrossRef]
  5. K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, P. Van Daele, “First demonstration of a 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36, 1028–1029 (2000).
    [CrossRef]
  6. V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, M. Dagenais, “1.55-µm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
    [CrossRef]
  7. M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. López-Amo, I. Moerman, P. Van Daele, R. Baets, “Mode-expanded 1.55 µm InP-InGaAsP Fabry-Pérot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron. 8, 1389–1398 (2002).
    [CrossRef]
  8. M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [CrossRef]
  9. T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
    [CrossRef]
  10. B. M. A. Rahman, M. Rajarajan, T. Wongchaeron, K. T. V. Grattan, “Improved laser-fiber coupling by using spot-size transformers,” IEEE Photon. Technol. Lett. 8, 557–559 (1996).
    [CrossRef]
  11. V. Vusirikala, S. S. Saini, R. E. Bartolo, M. Dagenais, D. R. Stone, “Compact mode expanders using resonant coupling between a tapered active region and an underlying coupling waveguide,” IEEE Photon. Technol. Lett. 10, 203–205 (1998).
    [CrossRef]
  12. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE Proc. J. 138, 343–354 (1991).
  13. T. Wongchaeron, B. M. A. Rahman, R. Rajarajan, K. T. V. Grattan, “Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling,” J. Lightwave Technol. 19, 708–716 (2001).
    [CrossRef]
  14. M. Galarza, K. De Mesel, D. Fuentes, R. Baets, M. Lopez-Amo, “Modeling of InGaAsP-InP 1.55 µm lasers with integrated mode expanders using fiber matched leaky waveguides,” Appl. Phys. B 73, 585–588 (2001).
    [CrossRef]
  15. S. S. Saini, Z. Dilli, F. G. Johnson, H. Shen, W. Zhou, M. Dagenais, “Taper length variation in passive active resonant coupler (PARC) platform,” in Integrated Photonics Research, Vol. 46 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper IThG3.

2002 (1)

M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. López-Amo, I. Moerman, P. Van Daele, R. Baets, “Mode-expanded 1.55 µm InP-InGaAsP Fabry-Pérot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron. 8, 1389–1398 (2002).
[CrossRef]

2001 (2)

M. Galarza, K. De Mesel, D. Fuentes, R. Baets, M. Lopez-Amo, “Modeling of InGaAsP-InP 1.55 µm lasers with integrated mode expanders using fiber matched leaky waveguides,” Appl. Phys. B 73, 585–588 (2001).
[CrossRef]

T. Wongchaeron, B. M. A. Rahman, R. Rajarajan, K. T. V. Grattan, “Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling,” J. Lightwave Technol. 19, 708–716 (2001).
[CrossRef]

2000 (3)

T. Alder, A. Stöhr, R. Heinzelmann, D. Jäger, “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photon. Technol. Lett. 12, 1016–1018 (2000).
[CrossRef]

S. S. Saini, F. G. Johnson, D. R. Stone, H. Shen, W. Zhou, M. Dagenais, “Passive active resonant coupler (PARC) platform with mode expander,” IEEE Photon. Technol. Lett. 12, 1025–1027 (2000).
[CrossRef]

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, P. Van Daele, “First demonstration of a 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36, 1028–1029 (2000).
[CrossRef]

1998 (1)

V. Vusirikala, S. S. Saini, R. E. Bartolo, M. Dagenais, D. R. Stone, “Compact mode expanders using resonant coupling between a tapered active region and an underlying coupling waveguide,” IEEE Photon. Technol. Lett. 10, 203–205 (1998).
[CrossRef]

1997 (3)

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, M. Dagenais, “1.55-µm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[CrossRef]

G. A. Vawter, A. T. Sullivan, J. R. Wendt, R. E. Smith, H. Q. Hou, J. F. Klem, “Tapered rib adiabatic following fiber couplers in etched GaAs materials for monolithic spot-size transformation,” IEEE J. Sel. Top. Quantum Electron. 3, 1361–1371 (1997).
[CrossRef]

I. Moerman, P. Van Daele, P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3, 1308–1320 (1997).
[CrossRef]

1996 (1)

B. M. A. Rahman, M. Rajarajan, T. Wongchaeron, K. T. V. Grattan, “Improved laser-fiber coupling by using spot-size transformers,” IEEE Photon. Technol. Lett. 8, 557–559 (1996).
[CrossRef]

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE Proc. J. 138, 343–354 (1991).

1987 (1)

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Agarwala, S.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, M. Dagenais, “1.55-µm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[CrossRef]

Alder, T.

T. Alder, A. Stöhr, R. Heinzelmann, D. Jäger, “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photon. Technol. Lett. 12, 1016–1018 (2000).
[CrossRef]

Aramburu, C.

M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. López-Amo, I. Moerman, P. Van Daele, R. Baets, “Mode-expanded 1.55 µm InP-InGaAsP Fabry-Pérot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron. 8, 1389–1398 (2002).
[CrossRef]

Baets, R.

M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. López-Amo, I. Moerman, P. Van Daele, R. Baets, “Mode-expanded 1.55 µm InP-InGaAsP Fabry-Pérot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron. 8, 1389–1398 (2002).
[CrossRef]

M. Galarza, K. De Mesel, D. Fuentes, R. Baets, M. Lopez-Amo, “Modeling of InGaAsP-InP 1.55 µm lasers with integrated mode expanders using fiber matched leaky waveguides,” Appl. Phys. B 73, 585–588 (2001).
[CrossRef]

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, P. Van Daele, “First demonstration of a 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36, 1028–1029 (2000).
[CrossRef]

Bartolo, R. E.

V. Vusirikala, S. S. Saini, R. E. Bartolo, M. Dagenais, D. R. Stone, “Compact mode expanders using resonant coupling between a tapered active region and an underlying coupling waveguide,” IEEE Photon. Technol. Lett. 10, 203–205 (1998).
[CrossRef]

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, M. Dagenais, “1.55-µm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[CrossRef]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE Proc. J. 138, 343–354 (1991).

Boyd, G. D.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

Corvini, P. J.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

Dagenais, M.

S. S. Saini, F. G. Johnson, D. R. Stone, H. Shen, W. Zhou, M. Dagenais, “Passive active resonant coupler (PARC) platform with mode expander,” IEEE Photon. Technol. Lett. 12, 1025–1027 (2000).
[CrossRef]

V. Vusirikala, S. S. Saini, R. E. Bartolo, M. Dagenais, D. R. Stone, “Compact mode expanders using resonant coupling between a tapered active region and an underlying coupling waveguide,” IEEE Photon. Technol. Lett. 10, 203–205 (1998).
[CrossRef]

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, M. Dagenais, “1.55-µm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[CrossRef]

S. S. Saini, Z. Dilli, F. G. Johnson, H. Shen, W. Zhou, M. Dagenais, “Taper length variation in passive active resonant coupler (PARC) platform,” in Integrated Photonics Research, Vol. 46 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper IThG3.

De Mesel, K.

M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. López-Amo, I. Moerman, P. Van Daele, R. Baets, “Mode-expanded 1.55 µm InP-InGaAsP Fabry-Pérot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron. 8, 1389–1398 (2002).
[CrossRef]

M. Galarza, K. De Mesel, D. Fuentes, R. Baets, M. Lopez-Amo, “Modeling of InGaAsP-InP 1.55 µm lasers with integrated mode expanders using fiber matched leaky waveguides,” Appl. Phys. B 73, 585–588 (2001).
[CrossRef]

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, P. Van Daele, “First demonstration of a 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36, 1028–1029 (2000).
[CrossRef]

Demeester, P. M.

I. Moerman, P. Van Daele, P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3, 1308–1320 (1997).
[CrossRef]

Dilli, Z.

S. S. Saini, Z. Dilli, F. G. Johnson, H. Shen, W. Zhou, M. Dagenais, “Taper length variation in passive active resonant coupler (PARC) platform,” in Integrated Photonics Research, Vol. 46 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper IThG3.

Duguay, M. A.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Fuentes, D.

M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. López-Amo, I. Moerman, P. Van Daele, R. Baets, “Mode-expanded 1.55 µm InP-InGaAsP Fabry-Pérot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron. 8, 1389–1398 (2002).
[CrossRef]

M. Galarza, K. De Mesel, D. Fuentes, R. Baets, M. Lopez-Amo, “Modeling of InGaAsP-InP 1.55 µm lasers with integrated mode expanders using fiber matched leaky waveguides,” Appl. Phys. B 73, 585–588 (2001).
[CrossRef]

Galarza, M.

M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. López-Amo, I. Moerman, P. Van Daele, R. Baets, “Mode-expanded 1.55 µm InP-InGaAsP Fabry-Pérot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron. 8, 1389–1398 (2002).
[CrossRef]

M. Galarza, K. De Mesel, D. Fuentes, R. Baets, M. Lopez-Amo, “Modeling of InGaAsP-InP 1.55 µm lasers with integrated mode expanders using fiber matched leaky waveguides,” Appl. Phys. B 73, 585–588 (2001).
[CrossRef]

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE Proc. J. 138, 343–354 (1991).

Grattan, K. T. V.

T. Wongchaeron, B. M. A. Rahman, R. Rajarajan, K. T. V. Grattan, “Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling,” J. Lightwave Technol. 19, 708–716 (2001).
[CrossRef]

B. M. A. Rahman, M. Rajarajan, T. Wongchaeron, K. T. V. Grattan, “Improved laser-fiber coupling by using spot-size transformers,” IEEE Photon. Technol. Lett. 8, 557–559 (1996).
[CrossRef]

Heinzelmann, R.

T. Alder, A. Stöhr, R. Heinzelmann, D. Jäger, “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photon. Technol. Lett. 12, 1016–1018 (2000).
[CrossRef]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE Proc. J. 138, 343–354 (1991).

Hou, H. Q.

G. A. Vawter, A. T. Sullivan, J. R. Wendt, R. E. Smith, H. Q. Hou, J. F. Klem, “Tapered rib adiabatic following fiber couplers in etched GaAs materials for monolithic spot-size transformation,” IEEE J. Sel. Top. Quantum Electron. 3, 1361–1371 (1997).
[CrossRef]

Jäger, D.

T. Alder, A. Stöhr, R. Heinzelmann, D. Jäger, “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photon. Technol. Lett. 12, 1016–1018 (2000).
[CrossRef]

Johnson, F. G.

S. S. Saini, F. G. Johnson, D. R. Stone, H. Shen, W. Zhou, M. Dagenais, “Passive active resonant coupler (PARC) platform with mode expander,” IEEE Photon. Technol. Lett. 12, 1025–1027 (2000).
[CrossRef]

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, M. Dagenais, “1.55-µm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[CrossRef]

S. S. Saini, Z. Dilli, F. G. Johnson, H. Shen, W. Zhou, M. Dagenais, “Taper length variation in passive active resonant coupler (PARC) platform,” in Integrated Photonics Research, Vol. 46 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper IThG3.

Klem, J. F.

G. A. Vawter, A. T. Sullivan, J. R. Wendt, R. E. Smith, H. Q. Hou, J. F. Klem, “Tapered rib adiabatic following fiber couplers in etched GaAs materials for monolithic spot-size transformation,” IEEE J. Sel. Top. Quantum Electron. 3, 1361–1371 (1997).
[CrossRef]

Koch, T. L.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Koren, U.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE Proc. J. 138, 343–354 (1991).

Lopez-Amo, M.

M. Galarza, K. De Mesel, D. Fuentes, R. Baets, M. Lopez-Amo, “Modeling of InGaAsP-InP 1.55 µm lasers with integrated mode expanders using fiber matched leaky waveguides,” Appl. Phys. B 73, 585–588 (2001).
[CrossRef]

López-Amo, M.

M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. López-Amo, I. Moerman, P. Van Daele, R. Baets, “Mode-expanded 1.55 µm InP-InGaAsP Fabry-Pérot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron. 8, 1389–1398 (2002).
[CrossRef]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE Proc. J. 138, 343–354 (1991).

Moerman, I.

M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. López-Amo, I. Moerman, P. Van Daele, R. Baets, “Mode-expanded 1.55 µm InP-InGaAsP Fabry-Pérot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron. 8, 1389–1398 (2002).
[CrossRef]

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, P. Van Daele, “First demonstration of a 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36, 1028–1029 (2000).
[CrossRef]

I. Moerman, P. Van Daele, P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3, 1308–1320 (1997).
[CrossRef]

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Rahman, B. M. A.

T. Wongchaeron, B. M. A. Rahman, R. Rajarajan, K. T. V. Grattan, “Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling,” J. Lightwave Technol. 19, 708–716 (2001).
[CrossRef]

B. M. A. Rahman, M. Rajarajan, T. Wongchaeron, K. T. V. Grattan, “Improved laser-fiber coupling by using spot-size transformers,” IEEE Photon. Technol. Lett. 8, 557–559 (1996).
[CrossRef]

Rajarajan, M.

B. M. A. Rahman, M. Rajarajan, T. Wongchaeron, K. T. V. Grattan, “Improved laser-fiber coupling by using spot-size transformers,” IEEE Photon. Technol. Lett. 8, 557–559 (1996).
[CrossRef]

Rajarajan, R.

Saini, S. S.

S. S. Saini, F. G. Johnson, D. R. Stone, H. Shen, W. Zhou, M. Dagenais, “Passive active resonant coupler (PARC) platform with mode expander,” IEEE Photon. Technol. Lett. 12, 1025–1027 (2000).
[CrossRef]

V. Vusirikala, S. S. Saini, R. E. Bartolo, M. Dagenais, D. R. Stone, “Compact mode expanders using resonant coupling between a tapered active region and an underlying coupling waveguide,” IEEE Photon. Technol. Lett. 10, 203–205 (1998).
[CrossRef]

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, M. Dagenais, “1.55-µm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[CrossRef]

S. S. Saini, Z. Dilli, F. G. Johnson, H. Shen, W. Zhou, M. Dagenais, “Taper length variation in passive active resonant coupler (PARC) platform,” in Integrated Photonics Research, Vol. 46 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper IThG3.

Shen, H.

S. S. Saini, F. G. Johnson, D. R. Stone, H. Shen, W. Zhou, M. Dagenais, “Passive active resonant coupler (PARC) platform with mode expander,” IEEE Photon. Technol. Lett. 12, 1025–1027 (2000).
[CrossRef]

S. S. Saini, Z. Dilli, F. G. Johnson, H. Shen, W. Zhou, M. Dagenais, “Taper length variation in passive active resonant coupler (PARC) platform,” in Integrated Photonics Research, Vol. 46 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper IThG3.

Smith, R. E.

G. A. Vawter, A. T. Sullivan, J. R. Wendt, R. E. Smith, H. Q. Hou, J. F. Klem, “Tapered rib adiabatic following fiber couplers in etched GaAs materials for monolithic spot-size transformation,” IEEE J. Sel. Top. Quantum Electron. 3, 1361–1371 (1997).
[CrossRef]

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE Proc. J. 138, 343–354 (1991).

Stöhr, A.

T. Alder, A. Stöhr, R. Heinzelmann, D. Jäger, “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photon. Technol. Lett. 12, 1016–1018 (2000).
[CrossRef]

Stone, D. R.

S. S. Saini, F. G. Johnson, D. R. Stone, H. Shen, W. Zhou, M. Dagenais, “Passive active resonant coupler (PARC) platform with mode expander,” IEEE Photon. Technol. Lett. 12, 1025–1027 (2000).
[CrossRef]

V. Vusirikala, S. S. Saini, R. E. Bartolo, M. Dagenais, D. R. Stone, “Compact mode expanders using resonant coupling between a tapered active region and an underlying coupling waveguide,” IEEE Photon. Technol. Lett. 10, 203–205 (1998).
[CrossRef]

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, M. Dagenais, “1.55-µm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[CrossRef]

Sullivan, A. T.

G. A. Vawter, A. T. Sullivan, J. R. Wendt, R. E. Smith, H. Q. Hou, J. F. Klem, “Tapered rib adiabatic following fiber couplers in etched GaAs materials for monolithic spot-size transformation,” IEEE J. Sel. Top. Quantum Electron. 3, 1361–1371 (1997).
[CrossRef]

Sys, C.

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, P. Van Daele, “First demonstration of a 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36, 1028–1029 (2000).
[CrossRef]

Van Daele, P.

M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. López-Amo, I. Moerman, P. Van Daele, R. Baets, “Mode-expanded 1.55 µm InP-InGaAsP Fabry-Pérot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron. 8, 1389–1398 (2002).
[CrossRef]

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, P. Van Daele, “First demonstration of a 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36, 1028–1029 (2000).
[CrossRef]

I. Moerman, P. Van Daele, P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3, 1308–1320 (1997).
[CrossRef]

Vawter, G. A.

G. A. Vawter, A. T. Sullivan, J. R. Wendt, R. E. Smith, H. Q. Hou, J. F. Klem, “Tapered rib adiabatic following fiber couplers in etched GaAs materials for monolithic spot-size transformation,” IEEE J. Sel. Top. Quantum Electron. 3, 1361–1371 (1997).
[CrossRef]

Verstuyft, S.

M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. López-Amo, I. Moerman, P. Van Daele, R. Baets, “Mode-expanded 1.55 µm InP-InGaAsP Fabry-Pérot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron. 8, 1389–1398 (2002).
[CrossRef]

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, P. Van Daele, “First demonstration of a 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36, 1028–1029 (2000).
[CrossRef]

Vusirikala, V.

V. Vusirikala, S. S. Saini, R. E. Bartolo, M. Dagenais, D. R. Stone, “Compact mode expanders using resonant coupling between a tapered active region and an underlying coupling waveguide,” IEEE Photon. Technol. Lett. 10, 203–205 (1998).
[CrossRef]

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, M. Dagenais, “1.55-µm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[CrossRef]

Wendt, J. R.

G. A. Vawter, A. T. Sullivan, J. R. Wendt, R. E. Smith, H. Q. Hou, J. F. Klem, “Tapered rib adiabatic following fiber couplers in etched GaAs materials for monolithic spot-size transformation,” IEEE J. Sel. Top. Quantum Electron. 3, 1361–1371 (1997).
[CrossRef]

Whaley, R. D.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, M. Dagenais, “1.55-µm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[CrossRef]

Wongchaeron, T.

T. Wongchaeron, B. M. A. Rahman, R. Rajarajan, K. T. V. Grattan, “Spot-size conversion using uniform waveguide sections for efficient laser-fiber coupling,” J. Lightwave Technol. 19, 708–716 (2001).
[CrossRef]

B. M. A. Rahman, M. Rajarajan, T. Wongchaeron, K. T. V. Grattan, “Improved laser-fiber coupling by using spot-size transformers,” IEEE Photon. Technol. Lett. 8, 557–559 (1996).
[CrossRef]

Zhou, W.

S. S. Saini, F. G. Johnson, D. R. Stone, H. Shen, W. Zhou, M. Dagenais, “Passive active resonant coupler (PARC) platform with mode expander,” IEEE Photon. Technol. Lett. 12, 1025–1027 (2000).
[CrossRef]

S. S. Saini, Z. Dilli, F. G. Johnson, H. Shen, W. Zhou, M. Dagenais, “Taper length variation in passive active resonant coupler (PARC) platform,” in Integrated Photonics Research, Vol. 46 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper IThG3.

Appl. Phys. B (1)

M. Galarza, K. De Mesel, D. Fuentes, R. Baets, M. Lopez-Amo, “Modeling of InGaAsP-InP 1.55 µm lasers with integrated mode expanders using fiber matched leaky waveguides,” Appl. Phys. B 73, 585–588 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Electron. Lett. (2)

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

K. De Mesel, R. Baets, C. Sys, S. Verstuyft, I. Moerman, P. Van Daele, “First demonstration of a 980 nm oxide confined laser with integrated spot size converter,” Electron. Lett. 36, 1028–1029 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, M. Dagenais, “1.55-µm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3, 1332–1343 (1997).
[CrossRef]

M. Galarza, K. De Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, M. López-Amo, I. Moerman, P. Van Daele, R. Baets, “Mode-expanded 1.55 µm InP-InGaAsP Fabry-Pérot lasers using ARROW waveguides for efficient fiber coupling,” IEEE J. Sel. Top. Quantum Electron. 8, 1389–1398 (2002).
[CrossRef]

I. Moerman, P. Van Daele, P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3, 1308–1320 (1997).
[CrossRef]

G. A. Vawter, A. T. Sullivan, J. R. Wendt, R. E. Smith, H. Q. Hou, J. F. Klem, “Tapered rib adiabatic following fiber couplers in etched GaAs materials for monolithic spot-size transformation,” IEEE J. Sel. Top. Quantum Electron. 3, 1361–1371 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

T. Alder, A. Stöhr, R. Heinzelmann, D. Jäger, “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photon. Technol. Lett. 12, 1016–1018 (2000).
[CrossRef]

S. S. Saini, F. G. Johnson, D. R. Stone, H. Shen, W. Zhou, M. Dagenais, “Passive active resonant coupler (PARC) platform with mode expander,” IEEE Photon. Technol. Lett. 12, 1025–1027 (2000).
[CrossRef]

B. M. A. Rahman, M. Rajarajan, T. Wongchaeron, K. T. V. Grattan, “Improved laser-fiber coupling by using spot-size transformers,” IEEE Photon. Technol. Lett. 8, 557–559 (1996).
[CrossRef]

V. Vusirikala, S. S. Saini, R. E. Bartolo, M. Dagenais, D. R. Stone, “Compact mode expanders using resonant coupling between a tapered active region and an underlying coupling waveguide,” IEEE Photon. Technol. Lett. 10, 203–205 (1998).
[CrossRef]

IEEE Proc. J. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE Proc. J. 138, 343–354 (1991).

J. Lightwave Technol. (1)

Other (1)

S. S. Saini, Z. Dilli, F. G. Johnson, H. Shen, W. Zhou, M. Dagenais, “Taper length variation in passive active resonant coupler (PARC) platform,” in Integrated Photonics Research, Vol. 46 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), paper IThG3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

In the adiabatic mode transformation concept, (a) the even supermode of the taper ψe is smoothly transformed into the passive broad mode without losing any power, and (b) the odd supermode ψo, which is not excited during the transformation, becomes a radiation mode.

Fig. 2
Fig. 2

Bimodal interference taper concept. (a) The fundamental supermode ψe transfers power to (b) the odd supermode ψo, and the interference between them spreads the field in the fiber-matched waveguide. In the final section, the power couples back to the fundamental mode of the taper.

Fig. 3
Fig. 3

Shape of the lateral tapering in a compact taper based on modal interference.

Fig. 4
Fig. 4

Schematic drawing of the mode-expanded laser showing the tapered upper active rib and the underlying fiber-matched ARROW.

Fig. 5
Fig. 5

(a) Even and (b) odd supermodes supported by the taper structure.

Fig. 6
Fig. 6

Field distribution as a function of the distance for the taper shape shown in (a). (b) w2 = 0.92 µm, (c) w2 = 0.86 µm. In both cases, L1 = 40 µm.

Fig. 7
Fig. 7

Mode transformation and fiber-coupling loss as a function of L3. L1 = 20 µm, L2 = 143 µm, w2 = 0.92 µm, w3 = 0.3 µm.

Fig. 8
Fig. 8

Compact taper shape.

Fig. 9
Fig. 9

Transverse plot of the propagating field and intensity plot of the fiber-matched output mode.

Fig. 10
Fig. 10

Mode transformation and fiber-coupling loss as a function of variations in (a) the width of the taper Δw, and (b) the etching depth of the laser rib Δe.

Fig. 11
Fig. 11

Taper shape presenting a smooth slope in the mode beating section.

Fig. 12
Fig. 12

Transverse plot of the propagating field and intensity plot of the fiber-matched output mode in the tolerant mode expander.

Fig. 13
Fig. 13

Tolerance analysis results for the tolerant design.

Metrics