Abstract

A description of the nonlinear response of a HgCdTe photoconductor on the incident optical radiation is derived from a two-level rate equation for the photoexcited carriers. The model accounts for a limited number of electrons available for photoexcitation, and the possibility of photostimulated relaxation of an already excited photoelectron. The detector response as well as the level of incident optical power where saturation occurs is directly related to the physical constants of the detector material. The saturation of the detector is the same phenomenon as is known for the saturable absorbers—the detector material becomes transparent when the incident optical power exceeds the saturation power. Even though the description given here is applied to the HgCdTe detector, the general model can be applied to other detector materials as well. The parameters for the model are fitted to a thermoelectrically cooled HgCdTe detector and afterwards employed to predict the detector noise performance in a heterodyne setup. Unlike for liquid-nitrogen-cooled detectors, shot-noise-limited detection cannot be obtained with use of only thermoelectrical cooling (226 K) of the detector. However, the detector performance can be optimized to be able to perform Doppler measurements from aerosol backscatter by use of the model presented to optimize the applied optical power in the reference wave.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Siliquini, L. Faraone, “The vertical photoconductor: a novel device structure suitable for HgCdTe two-dimensional infrared focal plane arrays,” Infrared Phys. Technol. 38, 205–221 (1997).
    [CrossRef]
  2. C. T. Elliott, N. T. Gordon, D. J. Wilson, C. L. Jones, C. D. Maxey, N. E. Metcalfe, A. Best, “A high-performance CO2 laser heterodyne detector operating at 250 K,” J. Mod. Opt. 45, 1601–1611 (1998).
  3. D. Oh, P. Drobinski, P. Salamitou, P. H. Flamant, “Optimal local oscillator power for CMT photo-voltaic detector in heterodyne mode,” Inf. Phys. Technol. 37, 325–333 (1996).
    [CrossRef]
  4. D. J. Wilson, G. D. J. Constant, R. Foord, J. M. Vaughan, “Detector performance studies for CO2 laser heterodyne systems,” Infrared Phys. 31, 109–115 (1991).
    [CrossRef]
  5. M. A. Kaiyan, H. F. Freeman, M. R. Hardesty, R. Lawrence, R. E. Cupp, “Heterodyne quantum efficiency of a HgCdTe infrared Doppler detector,” Appl. Opt. 28, 1750–1751 (1989).
  6. R. S. Hansen, S. Frandsen, L. Kristensen, O. Sangill, P. Lading, G. Miller, “Laser anemometry for control and performance measurements on wind turbines,” , European Union contract JOR3-CT98-0256 (Risø National Laboratory, Roskible, Denmark, 2001), available from the author.
  7. R. D. Callan, C. T. Elliott, N. T. Gordon, D. J. Wilson, A. Best, R. A. Catchpole, C. L. Jones, C. D. Maxey, N. E. Metcalfe, “A high performance minimally cooled CO2 laser receiver,” presented at the 9th Conference on Coherent Laser Radar, Linköbing, Sweden, 23–27 June 1997.
  8. Datasheet for TE Cooled MCT Detector PCI-L-2TE-3; No. 1234, (Vigo Systems, 3 Swietlików St., 01-389 Warsaw, Poland), www.vigo.com.pl .
  9. R. S. Hansen, G. Miller, “A laser anemometer for control and performance measurements on wind turbines,” in Proceedings of the 11th Coherent Laser Radar Conference (Defense Evaluation and Research Agency, Malvern, UK, 2001), p. 1230.
  10. J. M. Hunt, J. F. Holmes, F. Amazajerdian, “Optimum local oscillator levels for coherent detection using photoconductors,” Appl. Opt. 27, 3135–3141 (1988).
    [CrossRef] [PubMed]
  11. A. Fenigstein, S. E. Schacham, E. Finkman, “Covered electrode HgCdTe photoconductor under high illumination levels,” J. Vac. Sci. Technol. B 10, 1611–1616 (1992).
    [CrossRef]
  12. D. K. Arch, R. A. Wood, D. L. Smith, “High responsivity HgCdTe heterojunction photoconductor,” J. Appl. Phys. 58, 2360–2370 (1985).
    [CrossRef]
  13. J. Piotrowski, F. Perry, “Designers still choose mercury cadmium telluride,” Laser Focus World 33, 135–142 (1997).
  14. E. P. G. Smith, C. A. Musca, L. Faraone, “Two-dimensional modelling of HgCdTe photoconductive detectors,” Infrared Phys. Technol. 41, 175–186 (2000).
    [CrossRef]
  15. S. Mecabih, N. Amrane, B. Belgoumene, H. Aourag, “Opto-electronic properties of the ternary alloy Hg1-xCdxTe,” Physica A 276, 495–507 (2000).
    [CrossRef]
  16. G. L. Hansen, J. L. Schmidt, T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg1-xCdxTe,” J. Appl. Phys. 53, 7099–7101 (1982).
    [CrossRef]
  17. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  18. M. R. Spiegel, Mathematical Handbook of Formulas and Tables (McGraw-Hill, New York, 1993).
  19. R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 2115–2129 (1994).
    [CrossRef]
  20. D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler LIDARs over the Colorado High-Plains. 1. Intercomparison,” J. Geophys. Res. D 96, 5327–5335 (1991).
    [CrossRef]

2000

E. P. G. Smith, C. A. Musca, L. Faraone, “Two-dimensional modelling of HgCdTe photoconductive detectors,” Infrared Phys. Technol. 41, 175–186 (2000).
[CrossRef]

S. Mecabih, N. Amrane, B. Belgoumene, H. Aourag, “Opto-electronic properties of the ternary alloy Hg1-xCdxTe,” Physica A 276, 495–507 (2000).
[CrossRef]

1998

C. T. Elliott, N. T. Gordon, D. J. Wilson, C. L. Jones, C. D. Maxey, N. E. Metcalfe, A. Best, “A high-performance CO2 laser heterodyne detector operating at 250 K,” J. Mod. Opt. 45, 1601–1611 (1998).

1997

J. Piotrowski, F. Perry, “Designers still choose mercury cadmium telluride,” Laser Focus World 33, 135–142 (1997).

J. F. Siliquini, L. Faraone, “The vertical photoconductor: a novel device structure suitable for HgCdTe two-dimensional infrared focal plane arrays,” Infrared Phys. Technol. 38, 205–221 (1997).
[CrossRef]

1996

D. Oh, P. Drobinski, P. Salamitou, P. H. Flamant, “Optimal local oscillator power for CMT photo-voltaic detector in heterodyne mode,” Inf. Phys. Technol. 37, 325–333 (1996).
[CrossRef]

1994

R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 2115–2129 (1994).
[CrossRef]

1992

A. Fenigstein, S. E. Schacham, E. Finkman, “Covered electrode HgCdTe photoconductor under high illumination levels,” J. Vac. Sci. Technol. B 10, 1611–1616 (1992).
[CrossRef]

1991

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler LIDARs over the Colorado High-Plains. 1. Intercomparison,” J. Geophys. Res. D 96, 5327–5335 (1991).
[CrossRef]

D. J. Wilson, G. D. J. Constant, R. Foord, J. M. Vaughan, “Detector performance studies for CO2 laser heterodyne systems,” Infrared Phys. 31, 109–115 (1991).
[CrossRef]

1989

1988

1985

D. K. Arch, R. A. Wood, D. L. Smith, “High responsivity HgCdTe heterojunction photoconductor,” J. Appl. Phys. 58, 2360–2370 (1985).
[CrossRef]

1982

G. L. Hansen, J. L. Schmidt, T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg1-xCdxTe,” J. Appl. Phys. 53, 7099–7101 (1982).
[CrossRef]

Amazajerdian, F.

Amrane, N.

S. Mecabih, N. Amrane, B. Belgoumene, H. Aourag, “Opto-electronic properties of the ternary alloy Hg1-xCdxTe,” Physica A 276, 495–507 (2000).
[CrossRef]

Aourag, H.

S. Mecabih, N. Amrane, B. Belgoumene, H. Aourag, “Opto-electronic properties of the ternary alloy Hg1-xCdxTe,” Physica A 276, 495–507 (2000).
[CrossRef]

Arch, D. K.

D. K. Arch, R. A. Wood, D. L. Smith, “High responsivity HgCdTe heterojunction photoconductor,” J. Appl. Phys. 58, 2360–2370 (1985).
[CrossRef]

Belgoumene, B.

S. Mecabih, N. Amrane, B. Belgoumene, H. Aourag, “Opto-electronic properties of the ternary alloy Hg1-xCdxTe,” Physica A 276, 495–507 (2000).
[CrossRef]

Best, A.

C. T. Elliott, N. T. Gordon, D. J. Wilson, C. L. Jones, C. D. Maxey, N. E. Metcalfe, A. Best, “A high-performance CO2 laser heterodyne detector operating at 250 K,” J. Mod. Opt. 45, 1601–1611 (1998).

R. D. Callan, C. T. Elliott, N. T. Gordon, D. J. Wilson, A. Best, R. A. Catchpole, C. L. Jones, C. D. Maxey, N. E. Metcalfe, “A high performance minimally cooled CO2 laser receiver,” presented at the 9th Conference on Coherent Laser Radar, Linköbing, Sweden, 23–27 June 1997.

Bowdle, D. A.

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler LIDARs over the Colorado High-Plains. 1. Intercomparison,” J. Geophys. Res. D 96, 5327–5335 (1991).
[CrossRef]

Brown, D. W.

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler LIDARs over the Colorado High-Plains. 1. Intercomparison,” J. Geophys. Res. D 96, 5327–5335 (1991).
[CrossRef]

Callan, R. D.

R. D. Callan, C. T. Elliott, N. T. Gordon, D. J. Wilson, A. Best, R. A. Catchpole, C. L. Jones, C. D. Maxey, N. E. Metcalfe, “A high performance minimally cooled CO2 laser receiver,” presented at the 9th Conference on Coherent Laser Radar, Linköbing, Sweden, 23–27 June 1997.

Casselman, T. N.

G. L. Hansen, J. L. Schmidt, T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg1-xCdxTe,” J. Appl. Phys. 53, 7099–7101 (1982).
[CrossRef]

Catchpole, R. A.

R. D. Callan, C. T. Elliott, N. T. Gordon, D. J. Wilson, A. Best, R. A. Catchpole, C. L. Jones, C. D. Maxey, N. E. Metcalfe, “A high performance minimally cooled CO2 laser receiver,” presented at the 9th Conference on Coherent Laser Radar, Linköbing, Sweden, 23–27 June 1997.

Constant, G. D. J.

D. J. Wilson, G. D. J. Constant, R. Foord, J. M. Vaughan, “Detector performance studies for CO2 laser heterodyne systems,” Infrared Phys. 31, 109–115 (1991).
[CrossRef]

Cupp, R. E.

Drobinski, P.

D. Oh, P. Drobinski, P. Salamitou, P. H. Flamant, “Optimal local oscillator power for CMT photo-voltaic detector in heterodyne mode,” Inf. Phys. Technol. 37, 325–333 (1996).
[CrossRef]

Elliott, C. T.

C. T. Elliott, N. T. Gordon, D. J. Wilson, C. L. Jones, C. D. Maxey, N. E. Metcalfe, A. Best, “A high-performance CO2 laser heterodyne detector operating at 250 K,” J. Mod. Opt. 45, 1601–1611 (1998).

R. D. Callan, C. T. Elliott, N. T. Gordon, D. J. Wilson, A. Best, R. A. Catchpole, C. L. Jones, C. D. Maxey, N. E. Metcalfe, “A high performance minimally cooled CO2 laser receiver,” presented at the 9th Conference on Coherent Laser Radar, Linköbing, Sweden, 23–27 June 1997.

Faraone, L.

E. P. G. Smith, C. A. Musca, L. Faraone, “Two-dimensional modelling of HgCdTe photoconductive detectors,” Infrared Phys. Technol. 41, 175–186 (2000).
[CrossRef]

J. F. Siliquini, L. Faraone, “The vertical photoconductor: a novel device structure suitable for HgCdTe two-dimensional infrared focal plane arrays,” Infrared Phys. Technol. 38, 205–221 (1997).
[CrossRef]

Fenigstein, A.

A. Fenigstein, S. E. Schacham, E. Finkman, “Covered electrode HgCdTe photoconductor under high illumination levels,” J. Vac. Sci. Technol. B 10, 1611–1616 (1992).
[CrossRef]

Finkman, E.

A. Fenigstein, S. E. Schacham, E. Finkman, “Covered electrode HgCdTe photoconductor under high illumination levels,” J. Vac. Sci. Technol. B 10, 1611–1616 (1992).
[CrossRef]

Flamant, P. H.

D. Oh, P. Drobinski, P. Salamitou, P. H. Flamant, “Optimal local oscillator power for CMT photo-voltaic detector in heterodyne mode,” Inf. Phys. Technol. 37, 325–333 (1996).
[CrossRef]

Foord, R.

D. J. Wilson, G. D. J. Constant, R. Foord, J. M. Vaughan, “Detector performance studies for CO2 laser heterodyne systems,” Infrared Phys. 31, 109–115 (1991).
[CrossRef]

Frandsen, S.

R. S. Hansen, S. Frandsen, L. Kristensen, O. Sangill, P. Lading, G. Miller, “Laser anemometry for control and performance measurements on wind turbines,” , European Union contract JOR3-CT98-0256 (Risø National Laboratory, Roskible, Denmark, 2001), available from the author.

Freeman, H. F.

Frehlich, R. G.

R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 2115–2129 (1994).
[CrossRef]

Gordon, N. T.

C. T. Elliott, N. T. Gordon, D. J. Wilson, C. L. Jones, C. D. Maxey, N. E. Metcalfe, A. Best, “A high-performance CO2 laser heterodyne detector operating at 250 K,” J. Mod. Opt. 45, 1601–1611 (1998).

R. D. Callan, C. T. Elliott, N. T. Gordon, D. J. Wilson, A. Best, R. A. Catchpole, C. L. Jones, C. D. Maxey, N. E. Metcalfe, “A high performance minimally cooled CO2 laser receiver,” presented at the 9th Conference on Coherent Laser Radar, Linköbing, Sweden, 23–27 June 1997.

Hansen, G. L.

G. L. Hansen, J. L. Schmidt, T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg1-xCdxTe,” J. Appl. Phys. 53, 7099–7101 (1982).
[CrossRef]

Hansen, R. S.

R. S. Hansen, G. Miller, “A laser anemometer for control and performance measurements on wind turbines,” in Proceedings of the 11th Coherent Laser Radar Conference (Defense Evaluation and Research Agency, Malvern, UK, 2001), p. 1230.

R. S. Hansen, S. Frandsen, L. Kristensen, O. Sangill, P. Lading, G. Miller, “Laser anemometry for control and performance measurements on wind turbines,” , European Union contract JOR3-CT98-0256 (Risø National Laboratory, Roskible, Denmark, 2001), available from the author.

Hardesty, M. R.

Holmes, J. F.

Hunt, J. M.

Jones, C. L.

C. T. Elliott, N. T. Gordon, D. J. Wilson, C. L. Jones, C. D. Maxey, N. E. Metcalfe, A. Best, “A high-performance CO2 laser heterodyne detector operating at 250 K,” J. Mod. Opt. 45, 1601–1611 (1998).

R. D. Callan, C. T. Elliott, N. T. Gordon, D. J. Wilson, A. Best, R. A. Catchpole, C. L. Jones, C. D. Maxey, N. E. Metcalfe, “A high performance minimally cooled CO2 laser receiver,” presented at the 9th Conference on Coherent Laser Radar, Linköbing, Sweden, 23–27 June 1997.

Kaiyan, M. A.

Kristensen, L.

R. S. Hansen, S. Frandsen, L. Kristensen, O. Sangill, P. Lading, G. Miller, “Laser anemometry for control and performance measurements on wind turbines,” , European Union contract JOR3-CT98-0256 (Risø National Laboratory, Roskible, Denmark, 2001), available from the author.

Lading, P.

R. S. Hansen, S. Frandsen, L. Kristensen, O. Sangill, P. Lading, G. Miller, “Laser anemometry for control and performance measurements on wind turbines,” , European Union contract JOR3-CT98-0256 (Risø National Laboratory, Roskible, Denmark, 2001), available from the author.

Lawrence, R.

Maxey, C. D.

C. T. Elliott, N. T. Gordon, D. J. Wilson, C. L. Jones, C. D. Maxey, N. E. Metcalfe, A. Best, “A high-performance CO2 laser heterodyne detector operating at 250 K,” J. Mod. Opt. 45, 1601–1611 (1998).

R. D. Callan, C. T. Elliott, N. T. Gordon, D. J. Wilson, A. Best, R. A. Catchpole, C. L. Jones, C. D. Maxey, N. E. Metcalfe, “A high performance minimally cooled CO2 laser receiver,” presented at the 9th Conference on Coherent Laser Radar, Linköbing, Sweden, 23–27 June 1997.

Mecabih, S.

S. Mecabih, N. Amrane, B. Belgoumene, H. Aourag, “Opto-electronic properties of the ternary alloy Hg1-xCdxTe,” Physica A 276, 495–507 (2000).
[CrossRef]

Metcalfe, N. E.

C. T. Elliott, N. T. Gordon, D. J. Wilson, C. L. Jones, C. D. Maxey, N. E. Metcalfe, A. Best, “A high-performance CO2 laser heterodyne detector operating at 250 K,” J. Mod. Opt. 45, 1601–1611 (1998).

R. D. Callan, C. T. Elliott, N. T. Gordon, D. J. Wilson, A. Best, R. A. Catchpole, C. L. Jones, C. D. Maxey, N. E. Metcalfe, “A high performance minimally cooled CO2 laser receiver,” presented at the 9th Conference on Coherent Laser Radar, Linköbing, Sweden, 23–27 June 1997.

Miller, G.

R. S. Hansen, G. Miller, “A laser anemometer for control and performance measurements on wind turbines,” in Proceedings of the 11th Coherent Laser Radar Conference (Defense Evaluation and Research Agency, Malvern, UK, 2001), p. 1230.

R. S. Hansen, S. Frandsen, L. Kristensen, O. Sangill, P. Lading, G. Miller, “Laser anemometry for control and performance measurements on wind turbines,” , European Union contract JOR3-CT98-0256 (Risø National Laboratory, Roskible, Denmark, 2001), available from the author.

Musca, C. A.

E. P. G. Smith, C. A. Musca, L. Faraone, “Two-dimensional modelling of HgCdTe photoconductive detectors,” Infrared Phys. Technol. 41, 175–186 (2000).
[CrossRef]

Oh, D.

D. Oh, P. Drobinski, P. Salamitou, P. H. Flamant, “Optimal local oscillator power for CMT photo-voltaic detector in heterodyne mode,” Inf. Phys. Technol. 37, 325–333 (1996).
[CrossRef]

Perry, F.

J. Piotrowski, F. Perry, “Designers still choose mercury cadmium telluride,” Laser Focus World 33, 135–142 (1997).

Piotrowski, J.

J. Piotrowski, F. Perry, “Designers still choose mercury cadmium telluride,” Laser Focus World 33, 135–142 (1997).

Post, M. J.

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler LIDARs over the Colorado High-Plains. 1. Intercomparison,” J. Geophys. Res. D 96, 5327–5335 (1991).
[CrossRef]

Rothermel, J.

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler LIDARs over the Colorado High-Plains. 1. Intercomparison,” J. Geophys. Res. D 96, 5327–5335 (1991).
[CrossRef]

Salamitou, P.

D. Oh, P. Drobinski, P. Salamitou, P. H. Flamant, “Optimal local oscillator power for CMT photo-voltaic detector in heterodyne mode,” Inf. Phys. Technol. 37, 325–333 (1996).
[CrossRef]

Sangill, O.

R. S. Hansen, S. Frandsen, L. Kristensen, O. Sangill, P. Lading, G. Miller, “Laser anemometry for control and performance measurements on wind turbines,” , European Union contract JOR3-CT98-0256 (Risø National Laboratory, Roskible, Denmark, 2001), available from the author.

Schacham, S. E.

A. Fenigstein, S. E. Schacham, E. Finkman, “Covered electrode HgCdTe photoconductor under high illumination levels,” J. Vac. Sci. Technol. B 10, 1611–1616 (1992).
[CrossRef]

Schmidt, J. L.

G. L. Hansen, J. L. Schmidt, T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg1-xCdxTe,” J. Appl. Phys. 53, 7099–7101 (1982).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Siliquini, J. F.

J. F. Siliquini, L. Faraone, “The vertical photoconductor: a novel device structure suitable for HgCdTe two-dimensional infrared focal plane arrays,” Infrared Phys. Technol. 38, 205–221 (1997).
[CrossRef]

Smith, D. L.

D. K. Arch, R. A. Wood, D. L. Smith, “High responsivity HgCdTe heterojunction photoconductor,” J. Appl. Phys. 58, 2360–2370 (1985).
[CrossRef]

Smith, E. P. G.

E. P. G. Smith, C. A. Musca, L. Faraone, “Two-dimensional modelling of HgCdTe photoconductive detectors,” Infrared Phys. Technol. 41, 175–186 (2000).
[CrossRef]

Spiegel, M. R.

M. R. Spiegel, Mathematical Handbook of Formulas and Tables (McGraw-Hill, New York, 1993).

Vaughan, J. M.

D. J. Wilson, G. D. J. Constant, R. Foord, J. M. Vaughan, “Detector performance studies for CO2 laser heterodyne systems,” Infrared Phys. 31, 109–115 (1991).
[CrossRef]

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler LIDARs over the Colorado High-Plains. 1. Intercomparison,” J. Geophys. Res. D 96, 5327–5335 (1991).
[CrossRef]

Wilson, D. J.

C. T. Elliott, N. T. Gordon, D. J. Wilson, C. L. Jones, C. D. Maxey, N. E. Metcalfe, A. Best, “A high-performance CO2 laser heterodyne detector operating at 250 K,” J. Mod. Opt. 45, 1601–1611 (1998).

D. J. Wilson, G. D. J. Constant, R. Foord, J. M. Vaughan, “Detector performance studies for CO2 laser heterodyne systems,” Infrared Phys. 31, 109–115 (1991).
[CrossRef]

R. D. Callan, C. T. Elliott, N. T. Gordon, D. J. Wilson, A. Best, R. A. Catchpole, C. L. Jones, C. D. Maxey, N. E. Metcalfe, “A high performance minimally cooled CO2 laser receiver,” presented at the 9th Conference on Coherent Laser Radar, Linköbing, Sweden, 23–27 June 1997.

Wood, R. A.

D. K. Arch, R. A. Wood, D. L. Smith, “High responsivity HgCdTe heterojunction photoconductor,” J. Appl. Phys. 58, 2360–2370 (1985).
[CrossRef]

Appl. Opt.

Inf. Phys. Technol.

D. Oh, P. Drobinski, P. Salamitou, P. H. Flamant, “Optimal local oscillator power for CMT photo-voltaic detector in heterodyne mode,” Inf. Phys. Technol. 37, 325–333 (1996).
[CrossRef]

Infrared Phys.

D. J. Wilson, G. D. J. Constant, R. Foord, J. M. Vaughan, “Detector performance studies for CO2 laser heterodyne systems,” Infrared Phys. 31, 109–115 (1991).
[CrossRef]

Infrared Phys. Technol.

J. F. Siliquini, L. Faraone, “The vertical photoconductor: a novel device structure suitable for HgCdTe two-dimensional infrared focal plane arrays,” Infrared Phys. Technol. 38, 205–221 (1997).
[CrossRef]

E. P. G. Smith, C. A. Musca, L. Faraone, “Two-dimensional modelling of HgCdTe photoconductive detectors,” Infrared Phys. Technol. 41, 175–186 (2000).
[CrossRef]

J. Appl. Phys.

G. L. Hansen, J. L. Schmidt, T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg1-xCdxTe,” J. Appl. Phys. 53, 7099–7101 (1982).
[CrossRef]

D. K. Arch, R. A. Wood, D. L. Smith, “High responsivity HgCdTe heterojunction photoconductor,” J. Appl. Phys. 58, 2360–2370 (1985).
[CrossRef]

J. Geophys. Res. D

D. A. Bowdle, J. Rothermel, J. M. Vaughan, D. W. Brown, M. J. Post, “Aerosol backscatter measurements at 10.6 micrometers with airborne and ground-based CO2 Doppler LIDARs over the Colorado High-Plains. 1. Intercomparison,” J. Geophys. Res. D 96, 5327–5335 (1991).
[CrossRef]

J. Mod. Opt.

C. T. Elliott, N. T. Gordon, D. J. Wilson, C. L. Jones, C. D. Maxey, N. E. Metcalfe, A. Best, “A high-performance CO2 laser heterodyne detector operating at 250 K,” J. Mod. Opt. 45, 1601–1611 (1998).

R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 2115–2129 (1994).
[CrossRef]

J. Vac. Sci. Technol. B

A. Fenigstein, S. E. Schacham, E. Finkman, “Covered electrode HgCdTe photoconductor under high illumination levels,” J. Vac. Sci. Technol. B 10, 1611–1616 (1992).
[CrossRef]

Laser Focus World

J. Piotrowski, F. Perry, “Designers still choose mercury cadmium telluride,” Laser Focus World 33, 135–142 (1997).

Physica A

S. Mecabih, N. Amrane, B. Belgoumene, H. Aourag, “Opto-electronic properties of the ternary alloy Hg1-xCdxTe,” Physica A 276, 495–507 (2000).
[CrossRef]

Other

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

M. R. Spiegel, Mathematical Handbook of Formulas and Tables (McGraw-Hill, New York, 1993).

R. S. Hansen, S. Frandsen, L. Kristensen, O. Sangill, P. Lading, G. Miller, “Laser anemometry for control and performance measurements on wind turbines,” , European Union contract JOR3-CT98-0256 (Risø National Laboratory, Roskible, Denmark, 2001), available from the author.

R. D. Callan, C. T. Elliott, N. T. Gordon, D. J. Wilson, A. Best, R. A. Catchpole, C. L. Jones, C. D. Maxey, N. E. Metcalfe, “A high performance minimally cooled CO2 laser receiver,” presented at the 9th Conference on Coherent Laser Radar, Linköbing, Sweden, 23–27 June 1997.

Datasheet for TE Cooled MCT Detector PCI-L-2TE-3; No. 1234, (Vigo Systems, 3 Swietlików St., 01-389 Warsaw, Poland), www.vigo.com.pl .

R. S. Hansen, G. Miller, “A laser anemometer for control and performance measurements on wind turbines,” in Proceedings of the 11th Coherent Laser Radar Conference (Defense Evaluation and Research Agency, Malvern, UK, 2001), p. 1230.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Bias circuit for the detector. Owing to the photogeneration of free electrons, the resistance of the photoconductor, Zd, varies as a function of the incident optical power.

Fig. 2
Fig. 2

Photoconductor with dimensions lx, ly and thickness lz is illuminated with photons of energy ℏω, where ω is the angular frequency of the incident light. The bias voltage is applied to the electrodes at each end of the photoconducting material and the current i flows through the detector material.

Fig. 3
Fig. 3

Valence band and the conduction band with energies E1 and E2 and number densities for electrons N1 and N2, respectively. W12 and W21 are the rates of photoexcitation and photostimulated relaxation, respectively, and the quantities w12 and w21 are the rates of thermal excitation and relaxation, respectively.

Fig. 4
Fig. 4

Responsitivity Rd for the detector is decreasing with the increase in incident optical power. The dots are the three measured values of Rd.

Fig. 5
Fig. 5

Voltage Vo across the detector as a function of the incident optical power. The detector is seen to be saturating at incident powers above 10 mW. The three dashed curves are the measured detector responsitivities, Rd = dVo/dPDC, at three levels of the incident optical power.

Fig. 6
Fig. 6

Three noise contributions and the total detector noise plotted as a function of incident optical power. The plot is for the TE-cooled detector.

Fig. 7
Fig. 7

Three noise contributions and the total detector noise plotted as a function of incident optical power. This plot is for the case when the detector is cooled to liquid-nitrogen temperature.

Fig. 8
Fig. 8

Detector noise equivalent power plotted as a function of incident optical power. The plot is given for the detector at room temperature, TE-cooled, and cooled further to liquid nitrogen temperature. The plots are for Δf = 1 Hz.

Fig. 9
Fig. 9

Heterodyne noise equivalent power plotted as a function of incident optical power. The plot is given for three situations: the detector at room temperature, the present TE-cooled detector, and the same detector material cooled to liquid nitrogen temperature. The plots are for Δf = 1 Hz.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

Vo=Vb1+RbSd,
Sd=1Zd=Sdp+Sdo.
Sdp=qeμlxlzlyN2,
dN1dt=-dN2dt=-W12+w12N1t+W21+w21N2t,
W12t=W21t=ξ4π2γradΔωanAcPopttλ31+2ωopt-ωaΔωa2,
ψ=ξ4π2γradΔωanAcλ31+2ωopt-ωaΔωa2,
W12t=W21t=ψPoptt.
w12w21=exp-Eg/kBT,
dΔNtdt=-2W12tΔNt-ΔNt-ΔN0T1,
cB=tanhEg2kBT,
ΔN=ΔN01+2T1ψPDC.
Sdp,ss=Sd,max1-cB1+ptPDC,
Sd,max=12 qeμ lxlzly N,
pt=2T1ψ,
Sdo=Sdo,max1-cBex,
cBex=tanhEex2kBT,
VoPDC=VbGo-Go2cBRbSd,maxptPDC+Go3cBRbSd,max×1+RbSd,max+SdoptPDC2,
Go=11+RbSd,max1-cB+Sdo.
ΔNt=1T1  ΔN0exp Qtdtdtexp Qtdt,
Qt=2W12t+1T1.
Poptt=Pref+Psig1+2ηPrefPsigPref+PsigcosωDt=PDC1+M cosωDt,
 Qtdt=ω0t+2ψPDCMωDsinωDt,
1ω0=τ0=T11+ptPDC
ΔN=ΔN01+2T1ψPDC×1+2MψPDCw02+ωD21/2cosωDt-ϕ,
Sdpt=Sd,max1-cB1+ptPDC×1-2ψPsignalw02+ωD21/2cosωDt-ϕ,
VdtVb1+RbSd,ss×1-RbSd,max1+RbSd,sscBptPsignal1+ptPDC2×11+ωDω021/2cosωDt-ϕ.
Rd=VbRbSd,maxcBpt1+RbSd,ss21+ptPDC2×11+ωDω021/2V/W.
PDC,optimum=13pt1-cB11+1RbSd,max.
νN2¯=R24kbTaRb+4GqeVoSdp,ss+2qeVoSdoΔf,
R=RbRbSd,ss+1,
G=τotp=τoμeVoly2.
PNEP=νN2Rd,
D*=lxlyΔfPNEPPDC0=1×109cmHzW,
PNEP=νN24Rd2Pref,

Metrics