Abstract

To recognize digital streams of digital data, all-optical and passive techniques able to discriminate optical bit words in real time are presented. Discrimination capability of different correlators, both in free space architectures and in delay lines structures, is theoretically and experimentally analyzed. Experimental performances in word recognition are shown in the case of a volume holographic correlator, in the case of a lithographic phase-only-filter correlator, and in the case of a novel coherent delay lines correlator operating at the wavelength 1550 nm and at the bit rate of 2.5 Gbit/s.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Boffi, D. Piccinin, M. C. Ubaldi, eds., Infrared holography for optical communications: techniques, materials and devices—Topics in Applied Physics86 (Springer-Verlag, Berlin, Heidelberg, 2003).
    [CrossRef]
  2. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  3. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
    [CrossRef] [PubMed]
  4. C. Gu, H. Fu, J. Lien, “Correlation patterns and cross-talk noise in volume holographic optical correlators,” J. Opt. Soc. Am. A 12, 861–868 (1995).
    [CrossRef]
  5. H. Zhou, F. Zhao, F. T. S. Yu, T. Chao, Opt. Eng. 32, 2720–2721 (1993).
    [CrossRef]
  6. J. L. Horner, P. D. Gianino, Appl. Opt. 24, 851–855 (1985).
    [CrossRef]
  7. A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. H. Steier, S. B. Trivedi, M. B. Klein, “Photorefractivity at 1.5 μm in CdTe:V,” Appl. Phys. Lett. 57, 846–848 (1990).
    [CrossRef]
  8. D. Psaltis, F. Mok, H. S. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210–212 (1994).
    [CrossRef] [PubMed]
  9. H. Lee, “Cross-talk effects in multiplexed volume holograms,” Opt. Lett. 13, 874–876 (1988).
    [CrossRef] [PubMed]
  10. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  11. F. T. Yu, S. Wu, A. W. Mayers, S. Rayan, “Wavelength-multiplexed reflection-matched spatial filters using LiNbO3,” Opt. Commun. 81, 343–347 (1991).
    [CrossRef]
  12. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical network using photorefractive crystals,” Appl. Opt. 27, 1752–1755 (1988).
    [CrossRef]
  13. M. Baciocchi, E. Di Fabrizio, M. Gentili, L. Grella, R. Maggiora, L. Mastrogiacomo, D. Peschiaroli, Jap. Journ. App. Phys. 34, 34–38 (1995).
  14. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical Fiber Delay Line Signal Processing,” IEEE Trans. Microwave Theory Tech. MIT-33, 193–209 (1995).
  15. F. Khaleghi, M. Kavehrad, “A new correlator receiver architecture for noncoherent optical CDMA networks with bipolar capacity,” IEEE Trans. Commun. 41, 1335–1339 (1996).
    [CrossRef]
  16. J. A. Salehi, “Code division multiple-access techniques in optical fiber networks,” IEEE Trans. Commun. 37, 824–842 (1989).
    [CrossRef]

1996 (1)

F. Khaleghi, M. Kavehrad, “A new correlator receiver architecture for noncoherent optical CDMA networks with bipolar capacity,” IEEE Trans. Commun. 41, 1335–1339 (1996).
[CrossRef]

1995 (3)

M. Baciocchi, E. Di Fabrizio, M. Gentili, L. Grella, R. Maggiora, L. Mastrogiacomo, D. Peschiaroli, Jap. Journ. App. Phys. 34, 34–38 (1995).

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical Fiber Delay Line Signal Processing,” IEEE Trans. Microwave Theory Tech. MIT-33, 193–209 (1995).

C. Gu, H. Fu, J. Lien, “Correlation patterns and cross-talk noise in volume holographic optical correlators,” J. Opt. Soc. Am. A 12, 861–868 (1995).
[CrossRef]

1994 (1)

1993 (2)

1991 (1)

F. T. Yu, S. Wu, A. W. Mayers, S. Rayan, “Wavelength-multiplexed reflection-matched spatial filters using LiNbO3,” Opt. Commun. 81, 343–347 (1991).
[CrossRef]

1990 (1)

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. H. Steier, S. B. Trivedi, M. B. Klein, “Photorefractivity at 1.5 μm in CdTe:V,” Appl. Phys. Lett. 57, 846–848 (1990).
[CrossRef]

1989 (1)

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks,” IEEE Trans. Commun. 37, 824–842 (1989).
[CrossRef]

1988 (2)

1985 (1)

1966 (1)

1964 (1)

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Baciocchi, M.

M. Baciocchi, E. Di Fabrizio, M. Gentili, L. Grella, R. Maggiora, L. Mastrogiacomo, D. Peschiaroli, Jap. Journ. App. Phys. 34, 34–38 (1995).

Brady, D.

Chao, T.

H. Zhou, F. Zhao, F. T. S. Yu, T. Chao, Opt. Eng. 32, 2720–2721 (1993).
[CrossRef]

Cutler, C. C.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical Fiber Delay Line Signal Processing,” IEEE Trans. Microwave Theory Tech. MIT-33, 193–209 (1995).

Di Fabrizio, E.

M. Baciocchi, E. Di Fabrizio, M. Gentili, L. Grella, R. Maggiora, L. Mastrogiacomo, D. Peschiaroli, Jap. Journ. App. Phys. 34, 34–38 (1995).

Fu, H.

Garmire, E. M.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. H. Steier, S. B. Trivedi, M. B. Klein, “Photorefractivity at 1.5 μm in CdTe:V,” Appl. Phys. Lett. 57, 846–848 (1990).
[CrossRef]

Gentili, M.

M. Baciocchi, E. Di Fabrizio, M. Gentili, L. Grella, R. Maggiora, L. Mastrogiacomo, D. Peschiaroli, Jap. Journ. App. Phys. 34, 34–38 (1995).

Gianino, P. D.

Goodman, J. W.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical Fiber Delay Line Signal Processing,” IEEE Trans. Microwave Theory Tech. MIT-33, 193–209 (1995).

C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
[CrossRef] [PubMed]

Grella, L.

M. Baciocchi, E. Di Fabrizio, M. Gentili, L. Grella, R. Maggiora, L. Mastrogiacomo, D. Peschiaroli, Jap. Journ. App. Phys. 34, 34–38 (1995).

Gu, C.

Horner, J. L.

Jackson, K. P.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical Fiber Delay Line Signal Processing,” IEEE Trans. Microwave Theory Tech. MIT-33, 193–209 (1995).

Kavehrad, M.

F. Khaleghi, M. Kavehrad, “A new correlator receiver architecture for noncoherent optical CDMA networks with bipolar capacity,” IEEE Trans. Commun. 41, 1335–1339 (1996).
[CrossRef]

Khaleghi, F.

F. Khaleghi, M. Kavehrad, “A new correlator receiver architecture for noncoherent optical CDMA networks with bipolar capacity,” IEEE Trans. Commun. 41, 1335–1339 (1996).
[CrossRef]

Klein, M. B.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. H. Steier, S. B. Trivedi, M. B. Klein, “Photorefractivity at 1.5 μm in CdTe:V,” Appl. Phys. Lett. 57, 846–848 (1990).
[CrossRef]

Lee, H.

Li, H. S.

Lien, J.

Maggiora, R.

M. Baciocchi, E. Di Fabrizio, M. Gentili, L. Grella, R. Maggiora, L. Mastrogiacomo, D. Peschiaroli, Jap. Journ. App. Phys. 34, 34–38 (1995).

Mastrogiacomo, L.

M. Baciocchi, E. Di Fabrizio, M. Gentili, L. Grella, R. Maggiora, L. Mastrogiacomo, D. Peschiaroli, Jap. Journ. App. Phys. 34, 34–38 (1995).

Mayers, A. W.

F. T. Yu, S. Wu, A. W. Mayers, S. Rayan, “Wavelength-multiplexed reflection-matched spatial filters using LiNbO3,” Opt. Commun. 81, 343–347 (1991).
[CrossRef]

Millerd, J.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. H. Steier, S. B. Trivedi, M. B. Klein, “Photorefractivity at 1.5 μm in CdTe:V,” Appl. Phys. Lett. 57, 846–848 (1990).
[CrossRef]

Mok, F.

Mok, F. H.

Moslehi, B.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical Fiber Delay Line Signal Processing,” IEEE Trans. Microwave Theory Tech. MIT-33, 193–209 (1995).

Newton, S. A.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical Fiber Delay Line Signal Processing,” IEEE Trans. Microwave Theory Tech. MIT-33, 193–209 (1995).

Partovi, A.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. H. Steier, S. B. Trivedi, M. B. Klein, “Photorefractivity at 1.5 μm in CdTe:V,” Appl. Phys. Lett. 57, 846–848 (1990).
[CrossRef]

Peschiaroli, D.

M. Baciocchi, E. Di Fabrizio, M. Gentili, L. Grella, R. Maggiora, L. Mastrogiacomo, D. Peschiaroli, Jap. Journ. App. Phys. 34, 34–38 (1995).

Psaltis, D.

Rayan, S.

F. T. Yu, S. Wu, A. W. Mayers, S. Rayan, “Wavelength-multiplexed reflection-matched spatial filters using LiNbO3,” Opt. Commun. 81, 343–347 (1991).
[CrossRef]

Salehi, J. A.

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks,” IEEE Trans. Commun. 37, 824–842 (1989).
[CrossRef]

Shaw, H. J.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical Fiber Delay Line Signal Processing,” IEEE Trans. Microwave Theory Tech. MIT-33, 193–209 (1995).

Steier, W. H.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. H. Steier, S. B. Trivedi, M. B. Klein, “Photorefractivity at 1.5 μm in CdTe:V,” Appl. Phys. Lett. 57, 846–848 (1990).
[CrossRef]

Trivedi, S. B.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. H. Steier, S. B. Trivedi, M. B. Klein, “Photorefractivity at 1.5 μm in CdTe:V,” Appl. Phys. Lett. 57, 846–848 (1990).
[CrossRef]

Tur, M.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical Fiber Delay Line Signal Processing,” IEEE Trans. Microwave Theory Tech. MIT-33, 193–209 (1995).

VanderLugt, A.

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Wagner, K.

Weaver, C. S.

Wu, S.

F. T. Yu, S. Wu, A. W. Mayers, S. Rayan, “Wavelength-multiplexed reflection-matched spatial filters using LiNbO3,” Opt. Commun. 81, 343–347 (1991).
[CrossRef]

Yu, F. T.

F. T. Yu, S. Wu, A. W. Mayers, S. Rayan, “Wavelength-multiplexed reflection-matched spatial filters using LiNbO3,” Opt. Commun. 81, 343–347 (1991).
[CrossRef]

Yu, F. T. S.

H. Zhou, F. Zhao, F. T. S. Yu, T. Chao, Opt. Eng. 32, 2720–2721 (1993).
[CrossRef]

Zhao, F.

H. Zhou, F. Zhao, F. T. S. Yu, T. Chao, Opt. Eng. 32, 2720–2721 (1993).
[CrossRef]

Zhou, H.

H. Zhou, F. Zhao, F. T. S. Yu, T. Chao, Opt. Eng. 32, 2720–2721 (1993).
[CrossRef]

Ziari, M.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. H. Steier, S. B. Trivedi, M. B. Klein, “Photorefractivity at 1.5 μm in CdTe:V,” Appl. Phys. Lett. 57, 846–848 (1990).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. H. Steier, S. B. Trivedi, M. B. Klein, “Photorefractivity at 1.5 μm in CdTe:V,” Appl. Phys. Lett. 57, 846–848 (1990).
[CrossRef]

IEEE Trans. Commun. (2)

F. Khaleghi, M. Kavehrad, “A new correlator receiver architecture for noncoherent optical CDMA networks with bipolar capacity,” IEEE Trans. Commun. 41, 1335–1339 (1996).
[CrossRef]

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks,” IEEE Trans. Commun. 37, 824–842 (1989).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

IEEE Trans. Microwave Theory Tech. (1)

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical Fiber Delay Line Signal Processing,” IEEE Trans. Microwave Theory Tech. MIT-33, 193–209 (1995).

J. Opt. Soc. Am. A (1)

Jap. Journ. App. Phys. (1)

M. Baciocchi, E. Di Fabrizio, M. Gentili, L. Grella, R. Maggiora, L. Mastrogiacomo, D. Peschiaroli, Jap. Journ. App. Phys. 34, 34–38 (1995).

Opt. Commun. (1)

F. T. Yu, S. Wu, A. W. Mayers, S. Rayan, “Wavelength-multiplexed reflection-matched spatial filters using LiNbO3,” Opt. Commun. 81, 343–347 (1991).
[CrossRef]

Opt. Eng. (1)

H. Zhou, F. Zhao, F. T. S. Yu, T. Chao, Opt. Eng. 32, 2720–2721 (1993).
[CrossRef]

Opt. Lett. (3)

Other (1)

P. Boffi, D. Piccinin, M. C. Ubaldi, eds., Infrared holography for optical communications: techniques, materials and devices—Topics in Applied Physics86 (Springer-Verlag, Berlin, Heidelberg, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Maximum cross-correlation intensity (normalized with respect to the autocorrelation value) obtained in presence of POF for each IM-coded word of the whole set of 256 8-bit words.

Fig. 2
Fig. 2

Same as Fig. 1, except for each PM-coded word of the half-set of 128 8-bit words.

Fig. 3
Fig. 3

Experimental setup of the volume holographic optical correlator.

Fig. 4
Fig. 4

Correlation intensity related to the target word to be recognized [85 (1 0 1 0 1 0 1 0)] as a function of the input 8-bit words. Case of IM coding and MF: a) Simulation results, b) experimental response detected in the output of the volume holographic correlator. The correlations are normalized by the peak intensity of the autocorrelation.

Fig. 5
Fig. 5

Correlation intensity related to the target word to be recognized [191 (1 1 1 1 1 1 0 1)] as a function of the input 8-bit words. Case of PM coding and MF: a) Simulation results, b) experimental response detected in the output of the volume holographic correlator. The correlations are normalized by the peak intensity of the autocorrelation.

Fig. 6
Fig. 6

The 256 output spots corresponding to the correlation peaks between the target word to be recognized [191 (1 0 1 1 1 1 1 1)] and all the other PM-coded 8-bit words (experimental CCD camera detection). The highest peak is related to the autocorrelation value.

Fig. 7
Fig. 7

Experimental setup of the POF VL correlator with the lithographic mask filter.

Fig. 8
Fig. 8

Top: the calculated spatial phase shift of the POF for the 8-bit word to be recognized [235 (1 1 1 0 1 0 1 1)]. Bottom: the real profile in thickness of the lithographic POF achieved in PMMA.

Fig. 9
Fig. 9

Correlation intensity related to the word to be recognized [235 (1 1 1 0 1 0 1 1)] as a function of the input 8-bit most critical words: case of IM coding and POF.

Fig. 10
Fig. 10

Standard 4-bit delay lines optical correlator operation. Delay line corresponding to 0 in IM-coded target word is disconnected. Top: target word in the input. Bottom: all 1 IM-coded word in the input. No recognition is achieved.

Fig. 11
Fig. 11

Coherent 4-bit delay lines optical correlator operation. Delay line corresponding to 0 in target word is π phase shifted. Top: IM-coded target word in the input. Bottom: IM-coded all 1 word in the input. Recognition is achieved.

Fig. 12
Fig. 12

Picture of the coherent delay lines optical correlator prototype (optical fiber delay lines are visible).

Fig. 13
Fig. 13

Experimental output correlation in case of input (1 1 0 0 1 0 1 1) IM-coded word recognition in a pseudo-random binary system bit stream at 2.5 Gbit/s (shown at top).

Fig. 14
Fig. 14

Experimental output correlation in case of input (1 1 0 0 0 1) PM-coded word recognition in a pseudo-random binary system bit stream at 2.5 Gbit/s.

Tables (1)

Tables Icon

Table 1 Discrimination Values Related to IM-Coded 8-Bit Words in the Case of Coherent Delay Lines Correlation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D=1-max|c0j||a0|2,
DIM-MF11111=1-N-22N2
DPM-MF2N2words=1-N-22N2.
M=N2+1NNM
1-N-12N2<D<1-N/22N/2+1.
D=1-N-22N2.

Metrics