Abstract

A new pattern projection technique for measuring three-dimensional topography is presented, called the optimal intensity-modulation projection technique. The proposed technique dramatically shortens the measurement time and improves stripe detection accuracy compared with previous methods. Furthermore, the method deals reliably with discontinuous patterns and multiple objects.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Batlle, E. Mouaddib, J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey,” Pattern Recogn. 31, 963–982 (1998).
    [CrossRef]
  2. J. L. Posdamer, M. D. Altschuler, “Surface measurement by space encoded projected beam systems,” Comput. Graph. Image Process. 18, 1–17 (1982).
    [CrossRef]
  3. K. Sato, S. Inokuchi, “Three-dimensional surface measurement by space encoding range image,” Journal of Robotic Systems, 2, 27–39 (1985).
  4. G. Sansoni, L. Biancardi, U. Minoni, F. Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. on Instrumentation and Measurement, Vol. 43, No. 4, pp. 558–565 (1994).
    [CrossRef]
  5. K. Kalms, P. Jueptner, W. Osten, “Automatic adaptation of projected fringe patterns using a programmable LCD-projector,” in Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed., Proc. SPIE3100, 156–165 (1997).
    [CrossRef]
  6. Y. C. Hsieh, “Decoding structured light patterns for three-dimensional imaging systems,” Pattern Recogn. 34, 343–349 (2001).
    [CrossRef]
  7. B. Carrihill, R. Hummel, “Experiments with the intensity ratio depth sensor,” Comput. Vision Graph. Image Process. 32, 337–358 (1985).
    [CrossRef]
  8. M. Ito, A. Ishii, “A three-level checkerboard pattern (TCP) projection method for curved surface measurement,” Pattern Recogn. 28, 27–40 (1995).
    [CrossRef]
  9. K. Araki, M. Shimizu, T. Noda, Y. Chiba, Y. Tsuda, K. Ikegaya, K. Sannomiya, M. Gomi, “A high-speed and continuous 3d measurement system,” Mach. Vision Appl. 8, 79–84 (1995).
    [CrossRef]
  10. Z. J. Geng, “Rainbow three-dimensional camera: New concept of highspeed three-dimensional vision systems,” Opt. Eng. 35, 376–383 (1996).
    [CrossRef]
  11. E. Schubert, “Fast 3-D object recognition using multiple color coded illumination,” in Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP, (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 4, pp. 3057–3060.
    [CrossRef]
  12. D. Caspi, N. Kiryati, J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
    [CrossRef]
  13. E. Horn, N. Kiryati, “Toward optimal structured light patterns,” Image Vis. Comput. 17, 87–97 (1999).
    [CrossRef]
  14. C. Sinlapeecheewa, K. Takamasu, “3D Profile Measurement by Color Pattern Projection and System Calibration,” in Proceedings of the 2002 IEEE International Conference on Industrial Technology: Productivity Reincarnation through Robotics & Automation (Bangkok, Thailand, December 2002), pp. 405–410.
  15. X. Peng, S. M. Zhu, H. Ye, H. J. Tiziani, “Problem of phase unwrapping for stripe pattern overlaid with random noise and segmented discontinuity,” Automated Optical Inspection for Industry, F. Y. Wu, S. Ye, eds. Proc. SPIE2899, 96–104 (1996).
    [CrossRef]
  16. J. Zhong, Y. Zhang, “Absolute phase-measurement technique based on number theory in multifrequency grating projection profilometry,” Appl. Opt. 40, 492–500 (2001).
    [CrossRef]
  17. C. Lu, S. Inokuchi, “Intensity-modulated moiré topography,” Appl. Opt. 38, 4019–4029 (1999).
    [CrossRef]
  18. C. Lu, S. Inokuchi, “An absolute depth range measurement of 3-D objects based on modulation moiré topography,” in Proceedings of the 15th International Conference on Pattern Recognition (ICPR’00, Barcelona, Spain, Sep. 2000), Vol. 1, pp. 754–758.
  19. O. Nishikawa, T. Abe, Y. Yamaguchi, K. Tokai, T. Watanabe, H. Hotta, T. Iyoda, “New range finder based on the RE-encoding method and its application to 3D object modeling,” in Proceedings of the 7th Symposium on Sensing via Image Information, (Yokohama, Japan, 2001), pp. 261–266.
  20. Y. Shirai, M. Suwa, “Recognition of polyhedrons with a range finder,” in Proc. of the 2nd International Joint Conference on Artificial Intelligence (IJCAI-71, London, UK, September 1971), pp. 80–87.
  21. G. J. Agin, T. O. Binford, “Computer Description of Curved Objects,” in Proc. of the 3rd International Joint Conferences on Artificial Intelligence (IJCAI-73, Stanford, Mass., 1973), pp. 629–640.
  22. T. Kanade, A. Gruss, L. R. Carley, “A very fast VLSI rangefinder,” in Proc. IEEE Intl. Conf. on Robotics and Automation (Sacramento, Calif., 1991), pp. 1322–1329.

2001

Y. C. Hsieh, “Decoding structured light patterns for three-dimensional imaging systems,” Pattern Recogn. 34, 343–349 (2001).
[CrossRef]

J. Zhong, Y. Zhang, “Absolute phase-measurement technique based on number theory in multifrequency grating projection profilometry,” Appl. Opt. 40, 492–500 (2001).
[CrossRef]

1999

E. Horn, N. Kiryati, “Toward optimal structured light patterns,” Image Vis. Comput. 17, 87–97 (1999).
[CrossRef]

C. Lu, S. Inokuchi, “Intensity-modulated moiré topography,” Appl. Opt. 38, 4019–4029 (1999).
[CrossRef]

1998

D. Caspi, N. Kiryati, J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

J. Batlle, E. Mouaddib, J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey,” Pattern Recogn. 31, 963–982 (1998).
[CrossRef]

1996

Z. J. Geng, “Rainbow three-dimensional camera: New concept of highspeed three-dimensional vision systems,” Opt. Eng. 35, 376–383 (1996).
[CrossRef]

1995

M. Ito, A. Ishii, “A three-level checkerboard pattern (TCP) projection method for curved surface measurement,” Pattern Recogn. 28, 27–40 (1995).
[CrossRef]

K. Araki, M. Shimizu, T. Noda, Y. Chiba, Y. Tsuda, K. Ikegaya, K. Sannomiya, M. Gomi, “A high-speed and continuous 3d measurement system,” Mach. Vision Appl. 8, 79–84 (1995).
[CrossRef]

1994

G. Sansoni, L. Biancardi, U. Minoni, F. Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. on Instrumentation and Measurement, Vol. 43, No. 4, pp. 558–565 (1994).
[CrossRef]

1985

K. Sato, S. Inokuchi, “Three-dimensional surface measurement by space encoding range image,” Journal of Robotic Systems, 2, 27–39 (1985).

B. Carrihill, R. Hummel, “Experiments with the intensity ratio depth sensor,” Comput. Vision Graph. Image Process. 32, 337–358 (1985).
[CrossRef]

1982

J. L. Posdamer, M. D. Altschuler, “Surface measurement by space encoded projected beam systems,” Comput. Graph. Image Process. 18, 1–17 (1982).
[CrossRef]

Abe, T.

O. Nishikawa, T. Abe, Y. Yamaguchi, K. Tokai, T. Watanabe, H. Hotta, T. Iyoda, “New range finder based on the RE-encoding method and its application to 3D object modeling,” in Proceedings of the 7th Symposium on Sensing via Image Information, (Yokohama, Japan, 2001), pp. 261–266.

Agin, G. J.

G. J. Agin, T. O. Binford, “Computer Description of Curved Objects,” in Proc. of the 3rd International Joint Conferences on Artificial Intelligence (IJCAI-73, Stanford, Mass., 1973), pp. 629–640.

Altschuler, M. D.

J. L. Posdamer, M. D. Altschuler, “Surface measurement by space encoded projected beam systems,” Comput. Graph. Image Process. 18, 1–17 (1982).
[CrossRef]

Araki, K.

K. Araki, M. Shimizu, T. Noda, Y. Chiba, Y. Tsuda, K. Ikegaya, K. Sannomiya, M. Gomi, “A high-speed and continuous 3d measurement system,” Mach. Vision Appl. 8, 79–84 (1995).
[CrossRef]

Batlle, J.

J. Batlle, E. Mouaddib, J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey,” Pattern Recogn. 31, 963–982 (1998).
[CrossRef]

Biancardi, L.

G. Sansoni, L. Biancardi, U. Minoni, F. Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. on Instrumentation and Measurement, Vol. 43, No. 4, pp. 558–565 (1994).
[CrossRef]

Binford, T. O.

G. J. Agin, T. O. Binford, “Computer Description of Curved Objects,” in Proc. of the 3rd International Joint Conferences on Artificial Intelligence (IJCAI-73, Stanford, Mass., 1973), pp. 629–640.

Carley, L. R.

T. Kanade, A. Gruss, L. R. Carley, “A very fast VLSI rangefinder,” in Proc. IEEE Intl. Conf. on Robotics and Automation (Sacramento, Calif., 1991), pp. 1322–1329.

Carrihill, B.

B. Carrihill, R. Hummel, “Experiments with the intensity ratio depth sensor,” Comput. Vision Graph. Image Process. 32, 337–358 (1985).
[CrossRef]

Caspi, D.

D. Caspi, N. Kiryati, J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

Chiba, Y.

K. Araki, M. Shimizu, T. Noda, Y. Chiba, Y. Tsuda, K. Ikegaya, K. Sannomiya, M. Gomi, “A high-speed and continuous 3d measurement system,” Mach. Vision Appl. 8, 79–84 (1995).
[CrossRef]

Docchio, F.

G. Sansoni, L. Biancardi, U. Minoni, F. Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. on Instrumentation and Measurement, Vol. 43, No. 4, pp. 558–565 (1994).
[CrossRef]

Geng, Z. J.

Z. J. Geng, “Rainbow three-dimensional camera: New concept of highspeed three-dimensional vision systems,” Opt. Eng. 35, 376–383 (1996).
[CrossRef]

Gomi, M.

K. Araki, M. Shimizu, T. Noda, Y. Chiba, Y. Tsuda, K. Ikegaya, K. Sannomiya, M. Gomi, “A high-speed and continuous 3d measurement system,” Mach. Vision Appl. 8, 79–84 (1995).
[CrossRef]

Gruss, A.

T. Kanade, A. Gruss, L. R. Carley, “A very fast VLSI rangefinder,” in Proc. IEEE Intl. Conf. on Robotics and Automation (Sacramento, Calif., 1991), pp. 1322–1329.

Horn, E.

E. Horn, N. Kiryati, “Toward optimal structured light patterns,” Image Vis. Comput. 17, 87–97 (1999).
[CrossRef]

Hotta, H.

O. Nishikawa, T. Abe, Y. Yamaguchi, K. Tokai, T. Watanabe, H. Hotta, T. Iyoda, “New range finder based on the RE-encoding method and its application to 3D object modeling,” in Proceedings of the 7th Symposium on Sensing via Image Information, (Yokohama, Japan, 2001), pp. 261–266.

Hsieh, Y. C.

Y. C. Hsieh, “Decoding structured light patterns for three-dimensional imaging systems,” Pattern Recogn. 34, 343–349 (2001).
[CrossRef]

Hummel, R.

B. Carrihill, R. Hummel, “Experiments with the intensity ratio depth sensor,” Comput. Vision Graph. Image Process. 32, 337–358 (1985).
[CrossRef]

Ikegaya, K.

K. Araki, M. Shimizu, T. Noda, Y. Chiba, Y. Tsuda, K. Ikegaya, K. Sannomiya, M. Gomi, “A high-speed and continuous 3d measurement system,” Mach. Vision Appl. 8, 79–84 (1995).
[CrossRef]

Inokuchi, S.

C. Lu, S. Inokuchi, “Intensity-modulated moiré topography,” Appl. Opt. 38, 4019–4029 (1999).
[CrossRef]

K. Sato, S. Inokuchi, “Three-dimensional surface measurement by space encoding range image,” Journal of Robotic Systems, 2, 27–39 (1985).

C. Lu, S. Inokuchi, “An absolute depth range measurement of 3-D objects based on modulation moiré topography,” in Proceedings of the 15th International Conference on Pattern Recognition (ICPR’00, Barcelona, Spain, Sep. 2000), Vol. 1, pp. 754–758.

Ishii, A.

M. Ito, A. Ishii, “A three-level checkerboard pattern (TCP) projection method for curved surface measurement,” Pattern Recogn. 28, 27–40 (1995).
[CrossRef]

Ito, M.

M. Ito, A. Ishii, “A three-level checkerboard pattern (TCP) projection method for curved surface measurement,” Pattern Recogn. 28, 27–40 (1995).
[CrossRef]

Iyoda, T.

O. Nishikawa, T. Abe, Y. Yamaguchi, K. Tokai, T. Watanabe, H. Hotta, T. Iyoda, “New range finder based on the RE-encoding method and its application to 3D object modeling,” in Proceedings of the 7th Symposium on Sensing via Image Information, (Yokohama, Japan, 2001), pp. 261–266.

Jueptner, P.

K. Kalms, P. Jueptner, W. Osten, “Automatic adaptation of projected fringe patterns using a programmable LCD-projector,” in Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed., Proc. SPIE3100, 156–165 (1997).
[CrossRef]

Kalms, K.

K. Kalms, P. Jueptner, W. Osten, “Automatic adaptation of projected fringe patterns using a programmable LCD-projector,” in Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed., Proc. SPIE3100, 156–165 (1997).
[CrossRef]

Kanade, T.

T. Kanade, A. Gruss, L. R. Carley, “A very fast VLSI rangefinder,” in Proc. IEEE Intl. Conf. on Robotics and Automation (Sacramento, Calif., 1991), pp. 1322–1329.

Kiryati, N.

E. Horn, N. Kiryati, “Toward optimal structured light patterns,” Image Vis. Comput. 17, 87–97 (1999).
[CrossRef]

D. Caspi, N. Kiryati, J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

Lu, C.

C. Lu, S. Inokuchi, “Intensity-modulated moiré topography,” Appl. Opt. 38, 4019–4029 (1999).
[CrossRef]

C. Lu, S. Inokuchi, “An absolute depth range measurement of 3-D objects based on modulation moiré topography,” in Proceedings of the 15th International Conference on Pattern Recognition (ICPR’00, Barcelona, Spain, Sep. 2000), Vol. 1, pp. 754–758.

Minoni, U.

G. Sansoni, L. Biancardi, U. Minoni, F. Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. on Instrumentation and Measurement, Vol. 43, No. 4, pp. 558–565 (1994).
[CrossRef]

Mouaddib, E.

J. Batlle, E. Mouaddib, J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey,” Pattern Recogn. 31, 963–982 (1998).
[CrossRef]

Nishikawa, O.

O. Nishikawa, T. Abe, Y. Yamaguchi, K. Tokai, T. Watanabe, H. Hotta, T. Iyoda, “New range finder based on the RE-encoding method and its application to 3D object modeling,” in Proceedings of the 7th Symposium on Sensing via Image Information, (Yokohama, Japan, 2001), pp. 261–266.

Noda, T.

K. Araki, M. Shimizu, T. Noda, Y. Chiba, Y. Tsuda, K. Ikegaya, K. Sannomiya, M. Gomi, “A high-speed and continuous 3d measurement system,” Mach. Vision Appl. 8, 79–84 (1995).
[CrossRef]

Osten, W.

K. Kalms, P. Jueptner, W. Osten, “Automatic adaptation of projected fringe patterns using a programmable LCD-projector,” in Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed., Proc. SPIE3100, 156–165 (1997).
[CrossRef]

Peng, X.

X. Peng, S. M. Zhu, H. Ye, H. J. Tiziani, “Problem of phase unwrapping for stripe pattern overlaid with random noise and segmented discontinuity,” Automated Optical Inspection for Industry, F. Y. Wu, S. Ye, eds. Proc. SPIE2899, 96–104 (1996).
[CrossRef]

Posdamer, J. L.

J. L. Posdamer, M. D. Altschuler, “Surface measurement by space encoded projected beam systems,” Comput. Graph. Image Process. 18, 1–17 (1982).
[CrossRef]

Salvi, J.

J. Batlle, E. Mouaddib, J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey,” Pattern Recogn. 31, 963–982 (1998).
[CrossRef]

Sannomiya, K.

K. Araki, M. Shimizu, T. Noda, Y. Chiba, Y. Tsuda, K. Ikegaya, K. Sannomiya, M. Gomi, “A high-speed and continuous 3d measurement system,” Mach. Vision Appl. 8, 79–84 (1995).
[CrossRef]

Sansoni, G.

G. Sansoni, L. Biancardi, U. Minoni, F. Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. on Instrumentation and Measurement, Vol. 43, No. 4, pp. 558–565 (1994).
[CrossRef]

Sato, K.

K. Sato, S. Inokuchi, “Three-dimensional surface measurement by space encoding range image,” Journal of Robotic Systems, 2, 27–39 (1985).

Schubert, E.

E. Schubert, “Fast 3-D object recognition using multiple color coded illumination,” in Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP, (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 4, pp. 3057–3060.
[CrossRef]

Shamir, J.

D. Caspi, N. Kiryati, J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

Shimizu, M.

K. Araki, M. Shimizu, T. Noda, Y. Chiba, Y. Tsuda, K. Ikegaya, K. Sannomiya, M. Gomi, “A high-speed and continuous 3d measurement system,” Mach. Vision Appl. 8, 79–84 (1995).
[CrossRef]

Shirai, Y.

Y. Shirai, M. Suwa, “Recognition of polyhedrons with a range finder,” in Proc. of the 2nd International Joint Conference on Artificial Intelligence (IJCAI-71, London, UK, September 1971), pp. 80–87.

Sinlapeecheewa, C.

C. Sinlapeecheewa, K. Takamasu, “3D Profile Measurement by Color Pattern Projection and System Calibration,” in Proceedings of the 2002 IEEE International Conference on Industrial Technology: Productivity Reincarnation through Robotics & Automation (Bangkok, Thailand, December 2002), pp. 405–410.

Suwa, M.

Y. Shirai, M. Suwa, “Recognition of polyhedrons with a range finder,” in Proc. of the 2nd International Joint Conference on Artificial Intelligence (IJCAI-71, London, UK, September 1971), pp. 80–87.

Takamasu, K.

C. Sinlapeecheewa, K. Takamasu, “3D Profile Measurement by Color Pattern Projection and System Calibration,” in Proceedings of the 2002 IEEE International Conference on Industrial Technology: Productivity Reincarnation through Robotics & Automation (Bangkok, Thailand, December 2002), pp. 405–410.

Tiziani, H. J.

X. Peng, S. M. Zhu, H. Ye, H. J. Tiziani, “Problem of phase unwrapping for stripe pattern overlaid with random noise and segmented discontinuity,” Automated Optical Inspection for Industry, F. Y. Wu, S. Ye, eds. Proc. SPIE2899, 96–104 (1996).
[CrossRef]

Tokai, K.

O. Nishikawa, T. Abe, Y. Yamaguchi, K. Tokai, T. Watanabe, H. Hotta, T. Iyoda, “New range finder based on the RE-encoding method and its application to 3D object modeling,” in Proceedings of the 7th Symposium on Sensing via Image Information, (Yokohama, Japan, 2001), pp. 261–266.

Tsuda, Y.

K. Araki, M. Shimizu, T. Noda, Y. Chiba, Y. Tsuda, K. Ikegaya, K. Sannomiya, M. Gomi, “A high-speed and continuous 3d measurement system,” Mach. Vision Appl. 8, 79–84 (1995).
[CrossRef]

Watanabe, T.

O. Nishikawa, T. Abe, Y. Yamaguchi, K. Tokai, T. Watanabe, H. Hotta, T. Iyoda, “New range finder based on the RE-encoding method and its application to 3D object modeling,” in Proceedings of the 7th Symposium on Sensing via Image Information, (Yokohama, Japan, 2001), pp. 261–266.

Yamaguchi, Y.

O. Nishikawa, T. Abe, Y. Yamaguchi, K. Tokai, T. Watanabe, H. Hotta, T. Iyoda, “New range finder based on the RE-encoding method and its application to 3D object modeling,” in Proceedings of the 7th Symposium on Sensing via Image Information, (Yokohama, Japan, 2001), pp. 261–266.

Ye, H.

X. Peng, S. M. Zhu, H. Ye, H. J. Tiziani, “Problem of phase unwrapping for stripe pattern overlaid with random noise and segmented discontinuity,” Automated Optical Inspection for Industry, F. Y. Wu, S. Ye, eds. Proc. SPIE2899, 96–104 (1996).
[CrossRef]

Zhang, Y.

Zhong, J.

Zhu, S. M.

X. Peng, S. M. Zhu, H. Ye, H. J. Tiziani, “Problem of phase unwrapping for stripe pattern overlaid with random noise and segmented discontinuity,” Automated Optical Inspection for Industry, F. Y. Wu, S. Ye, eds. Proc. SPIE2899, 96–104 (1996).
[CrossRef]

Appl. Opt.

Comput. Graph. Image Process.

J. L. Posdamer, M. D. Altschuler, “Surface measurement by space encoded projected beam systems,” Comput. Graph. Image Process. 18, 1–17 (1982).
[CrossRef]

Comput. Vision Graph. Image Process.

B. Carrihill, R. Hummel, “Experiments with the intensity ratio depth sensor,” Comput. Vision Graph. Image Process. 32, 337–358 (1985).
[CrossRef]

IEEE Trans. on Instrumentation and Measurement

G. Sansoni, L. Biancardi, U. Minoni, F. Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. on Instrumentation and Measurement, Vol. 43, No. 4, pp. 558–565 (1994).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

D. Caspi, N. Kiryati, J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

Image Vis. Comput.

E. Horn, N. Kiryati, “Toward optimal structured light patterns,” Image Vis. Comput. 17, 87–97 (1999).
[CrossRef]

Journal of Robotic Systems

K. Sato, S. Inokuchi, “Three-dimensional surface measurement by space encoding range image,” Journal of Robotic Systems, 2, 27–39 (1985).

Mach. Vision Appl.

K. Araki, M. Shimizu, T. Noda, Y. Chiba, Y. Tsuda, K. Ikegaya, K. Sannomiya, M. Gomi, “A high-speed and continuous 3d measurement system,” Mach. Vision Appl. 8, 79–84 (1995).
[CrossRef]

Opt. Eng.

Z. J. Geng, “Rainbow three-dimensional camera: New concept of highspeed three-dimensional vision systems,” Opt. Eng. 35, 376–383 (1996).
[CrossRef]

Pattern Recogn.

M. Ito, A. Ishii, “A three-level checkerboard pattern (TCP) projection method for curved surface measurement,” Pattern Recogn. 28, 27–40 (1995).
[CrossRef]

J. Batlle, E. Mouaddib, J. Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey,” Pattern Recogn. 31, 963–982 (1998).
[CrossRef]

Y. C. Hsieh, “Decoding structured light patterns for three-dimensional imaging systems,” Pattern Recogn. 34, 343–349 (2001).
[CrossRef]

Other

K. Kalms, P. Jueptner, W. Osten, “Automatic adaptation of projected fringe patterns using a programmable LCD-projector,” in Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed., Proc. SPIE3100, 156–165 (1997).
[CrossRef]

C. Sinlapeecheewa, K. Takamasu, “3D Profile Measurement by Color Pattern Projection and System Calibration,” in Proceedings of the 2002 IEEE International Conference on Industrial Technology: Productivity Reincarnation through Robotics & Automation (Bangkok, Thailand, December 2002), pp. 405–410.

X. Peng, S. M. Zhu, H. Ye, H. J. Tiziani, “Problem of phase unwrapping for stripe pattern overlaid with random noise and segmented discontinuity,” Automated Optical Inspection for Industry, F. Y. Wu, S. Ye, eds. Proc. SPIE2899, 96–104 (1996).
[CrossRef]

C. Lu, S. Inokuchi, “An absolute depth range measurement of 3-D objects based on modulation moiré topography,” in Proceedings of the 15th International Conference on Pattern Recognition (ICPR’00, Barcelona, Spain, Sep. 2000), Vol. 1, pp. 754–758.

O. Nishikawa, T. Abe, Y. Yamaguchi, K. Tokai, T. Watanabe, H. Hotta, T. Iyoda, “New range finder based on the RE-encoding method and its application to 3D object modeling,” in Proceedings of the 7th Symposium on Sensing via Image Information, (Yokohama, Japan, 2001), pp. 261–266.

Y. Shirai, M. Suwa, “Recognition of polyhedrons with a range finder,” in Proc. of the 2nd International Joint Conference on Artificial Intelligence (IJCAI-71, London, UK, September 1971), pp. 80–87.

G. J. Agin, T. O. Binford, “Computer Description of Curved Objects,” in Proc. of the 3rd International Joint Conferences on Artificial Intelligence (IJCAI-73, Stanford, Mass., 1973), pp. 629–640.

T. Kanade, A. Gruss, L. R. Carley, “A very fast VLSI rangefinder,” in Proc. IEEE Intl. Conf. on Robotics and Automation (Sacramento, Calif., 1991), pp. 1322–1329.

E. Schubert, “Fast 3-D object recognition using multiple color coded illumination,” in Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP, (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 4, pp. 3057–3060.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Measurement system by use of the pattern-projection method.

Fig. 2
Fig. 2

Intensity-modulation projection pattern technique: (a) projection pattern, (b) spatial intensity distribution of stripes.

Fig. 3
Fig. 3

Spatial distribution of optimal projection pattern.

Fig. 4
Fig. 4

Measurement results with the optimal projection pattern.

Fig. 5
Fig. 5

Measurement results with the conventional projection pattern.

Fig. 6
Fig. 6

Measurement of intermittent fringe.

Fig. 7
Fig. 7

Measurement of a bust.

Fig. 8
Fig. 8

Exponential distribution model.

Fig. 9
Fig. 9

Correspondence between PC and PO with the exponential model.

Fig. 10
Fig. 10

Normal distribution model.

Fig. 11
Fig. 11

Correspondence between PC and PO using the normal model.

Tables (3)

Tables Icon

Table 1 Characteristics of Conventional Pattern-Projection Methods

Tables Icon

Table 2 Optimal Permutation with Maximum Value of d(p 1 , p 2 , …, p 20 ) a

Tables Icon

Table 3 Intensity Sequence Corresponding to the Optimal Projection Patterna

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

min1i,jNij|Ii-Ij|.
IminIp1<Ip2<<IpNImax.
min1i,jNij|Ii-Ij|=min1i<NIpi+1-Ipi,
Ipi=Imin+i-1Imax-IminN-1 i=1, 2,, N.
dI1, I2,, IN=i=M+1Nj=1M kj|Ii-Ii-j|,
kj=expM-j j=1,, M.
IjImin+i-1Imax-IminN-1i=1, 2,, N  for j=1, 2,, N
Ij=Imin+pj-1Imax-IminN-1 for j=1, 2,, N.
dp1, p2,, pN=i=M+1Nj=1M kj|pi-pi-j|.
dI1, I2,, IN=i=M+1Nj=1M kj|Ii-Ii-j| =i=M+1Nj=1M kjpi-1Imax-IminN-1-pi-j-1Imax-IminN-1 =Imax-IminN-1i=M+1Nj=1M kj|pi-pi-j| =Imax-IminN-1 dp1, p2,, pN.
Lik=1-w1|Īi-Ik|α-w2j=1N1|Īi-j-Ik-j|α-w3j=1N2|Īi+j-Ik+j|α,
k=k+τ,
τ=0,|Īi-j-Ik-j|α<20% and|Īi+j-Ik+j|α<20%1,|Īi+j-Ik+1+j|α<20% and|Īi+j-Ik+j|α>20%-1,|Īi-j-Ik-1-j|α<20% and|Īi-j-Ik-j|α>20%.
piδ=λ exp-λδ,
PC=1N-1i=1N-1 piδ=λ exp-Imax-IminN-1 λ.
PO=1N-1i=1N-1 piδi=1N-1i=1N-1 λ exp-δiλ
PO=119PC4+2PC5+PC6+PC7+3PC8+PC9+PC10+3PC11+PC12+2PC13+PC14+PC15+PC17.

Metrics