Abstract

The effectiveness of image stabilization with a retinal tracker in a multifunction, compact scanning laser ophthalmoscope (TSLO) was demonstrated in initial human subject tests. The retinal tracking system uses a confocal reflectometer with a closed-loop optical servo system to lock onto features in the fundus. The system is multifarious and modular to allow configuration for many research and clinical applications. Adult volunteers were tested without mydriasis to optimize the tracking instrumentation and to characterize imaging performance. The retinal tracking system achieves a bandwidth of greater than 1 kHz, which permits tracking at rates that greatly exceed the maximum rate of motion of the human eye. The TSLO system stabilized images to an accuracy of 0.05 deg in all test subjects during ordinary saccades with a velocity up to ∼500 deg/s. Feature lock was maintained for minutes despite subject eye blinking. Even when nearly 1000 frames were coadded, image blur was minimal. Successful frame coaddition allowed image acquisition with decreased noise in low-light applications. The retinal tracking system significantly enhances the imaging capabilities of the scanning laser ophthalmoscope.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb, G. W. Hughes, O. Pomerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt. 19, 2991–2997 (1980).
    [CrossRef] [PubMed]
  2. R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. BE-28, 488–492 (1981).
    [CrossRef]
  3. R. H. Webb, G. W. Hughes, F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987).
    [CrossRef] [PubMed]
  4. R. N. Weinreb, A. W. Dreher, J. F. Bille, “Quantitative assessment of the optic nerve head with the laser tomographic scanner,” Int. Ophthalmol. 13, 25–29 (1989).
    [CrossRef] [PubMed]
  5. A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vis. Res. 36, 191–205 (1996).
    [CrossRef] [PubMed]
  6. A. E. Elsner, S. A. Burns, E. Beausencourt, J. J. Weiter, “Foveal cone photopigment distributions: small alterations associated with macular pigment distribution,” Inv. Ophthalmol. Vis. Sci. 39, 2394–2404 (1998).
  7. A. E. Elsner, M. Miura, S. A. Burns, E. Beausencourt, C. Kunze, L. M. Kelley, J. P. Walker, G. L. Wing, P. A. Raskauskas, D. C. Fletcher, Q. Zhou, A. W. Dreher, “Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration,” Opt. Express 7, 95–106 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  8. A. E. Elsner, L. Moraes, E. Beausencourt, A. Remky, S. A. Burns, J. J. Weiter, J. P. Walker, G. L. Wing, P. A. Raskauskas, L. M. Kelley, “Scanning laser reflectometry of retinal and subretinal tissues,” Opt. Express 6, 243–250 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  9. N. P. A. Zagers, J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “Simulataneous measurement of foveal spectral reflectance and cone-photoreceptor directionality,” Appl. Opt. 41, 4686–4696 (2002).
    [CrossRef] [PubMed]
  10. D.-U. Bartsch, W. R. Freeman, “Laser-tissue interaction and artifacts in confocal scanning laser ophthalmoscopy and tomography,” Neurosci. Biobehav. Rev. 17, 459–467 (1993).
    [CrossRef] [PubMed]
  11. H. Lei, R. A. Schuchard, “Using two PRLs for different lighting conditions in patients with central scotomas,” Inv. Ophthalmol. Vis. Sci. 38, 1812–1818 (1997).
  12. R. A. Schuchard, T. W. Raasch, “Retinal locus for fixation: pericentral fixation targets,” Clin. Vision Sci. 7, 511–520 (1992).
  13. J. S. Sunness, N. M. Bressler, M. G. Maguire, “Scanning laser ophthalmoscopic analysis of the pattern of visual loss in age-related geographic atrophy of the macula,” Am. J. Ophthalmol. 119, 143–151 (1995).
    [PubMed]
  14. H. Scherer, W. Teiwes, A. H. Clarke, “Measuring three dimensions of eye movement in dynamic situations by means of videooculography,” Acta Otolaryngol. 111, 182–187 (1991).
    [CrossRef] [PubMed]
  15. T. N. Cornsweet, H. D. Crane, “Servo-controlled infrared optometer,” J. Opt. Soc. Am. 60, 548–554 (1970).
    [CrossRef] [PubMed]
  16. D. H. Kelly, H. D. Crane, J. W. Hill, T. N. Cornsweet, “Non-contact method of measuring small eye movements and stabilizing the retinal image,” J. Opt. Soc. Am. 59, 509 (1969).
  17. M. R. Jerath, R. Chundru, S. F. Barrett, H. G. Rylander, A. J. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111, 531–534 (1993).
    [CrossRef] [PubMed]
  18. J. H. C. Inderfurth, R. D. Ferguson, M. B. Frish, R. Birngruber, “Dynamic reflectometer for control of laser photocoagulation on the retina,” Lasers Surg. Med. 15, 54–61 (1994).
    [CrossRef] [PubMed]
  19. R. Daniel Ferguson, “Servo tracking system utilizing phase-sensitive detection of reflectance variation,” U. S. patents5,767,941 (16June1998) and 5,943,115 (24August1999).
  20. C. H. G. Wright, R. D. Ferguson, S. F. Barrett, H. G. Rylander, A. J. Welch, “Hybrid eye tracking for computer-aided retinal surgery,” Biomed. Sci. Instrum. 32, 225–235 (1996).
    [PubMed]
  21. C. H. G. Wright, R. D. Ferguson, H. G. Rylander, A. J. Welch, S. F. Barrett, “Hybrid approach to retinal tracking and laser aiming for photocoagulation,” J. Biomed. Opt. 2, 195–203 (1997).
    [CrossRef] [PubMed]
  22. E. Naess, T. Molvik, D. Ludwig, S. Barrett, S. Legowski, C. Wright, P. de Graaf, “Computer-assisted laser photocoagulation of the retina—a hybrid tracking approach,” J. Biomed. Opt. 7, 179–189 (2002).
    [CrossRef] [PubMed]
  23. R. D. Ferguson, A. E. Elsner, R. H. Webb, “A new approach to retinal tracking for image stabilization: initial results for the scanning laser ophthalmoscope,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 175–178.
  24. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, R. H. Webb, “Image stabilization for scanning laser ophthalmoscopy,” Opt. Express 10, 1542–1549 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  25. P. M. Livingston, “Laser active tracking,” Opt. Photonics News 12, 26–31 (2001).
    [CrossRef]
  26. R. Daniel Ferguson, “Line-scan laser ophthalmoscope,” U. S. patent application10/171, 883, filed 14June2002.
  27. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  28. S. A. Burns, S. Marcos, A. E. Elsner, S. Bara, “Contrast improvement of confocal retinal imaging by use of phase-correcting plates,” Opt. Lett. 27, 400–402 (2002).
    [CrossRef]
  29. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
    [CrossRef] [PubMed]
  30. F. C. Delori, “Spectrophotometer for noninvasive measurement of intrinsic fluorescence and reflectance of the ocular fundus,” Appl. Opt. 33, 7439–7452 (1994).
    [CrossRef] [PubMed]
  31. W. Gellermann, I. V. Ermakov, R. W. McClane, P. S. Bernstein, “Raman imaging of human macular pigments,” Opt. Lett. 27, 833–835 (2002).
    [CrossRef]

2002 (6)

2001 (2)

P. M. Livingston, “Laser active tracking,” Opt. Photonics News 12, 26–31 (2001).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

2000 (2)

1998 (1)

A. E. Elsner, S. A. Burns, E. Beausencourt, J. J. Weiter, “Foveal cone photopigment distributions: small alterations associated with macular pigment distribution,” Inv. Ophthalmol. Vis. Sci. 39, 2394–2404 (1998).

1997 (2)

H. Lei, R. A. Schuchard, “Using two PRLs for different lighting conditions in patients with central scotomas,” Inv. Ophthalmol. Vis. Sci. 38, 1812–1818 (1997).

C. H. G. Wright, R. D. Ferguson, H. G. Rylander, A. J. Welch, S. F. Barrett, “Hybrid approach to retinal tracking and laser aiming for photocoagulation,” J. Biomed. Opt. 2, 195–203 (1997).
[CrossRef] [PubMed]

1996 (2)

C. H. G. Wright, R. D. Ferguson, S. F. Barrett, H. G. Rylander, A. J. Welch, “Hybrid eye tracking for computer-aided retinal surgery,” Biomed. Sci. Instrum. 32, 225–235 (1996).
[PubMed]

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vis. Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

1995 (1)

J. S. Sunness, N. M. Bressler, M. G. Maguire, “Scanning laser ophthalmoscopic analysis of the pattern of visual loss in age-related geographic atrophy of the macula,” Am. J. Ophthalmol. 119, 143–151 (1995).
[PubMed]

1994 (2)

J. H. C. Inderfurth, R. D. Ferguson, M. B. Frish, R. Birngruber, “Dynamic reflectometer for control of laser photocoagulation on the retina,” Lasers Surg. Med. 15, 54–61 (1994).
[CrossRef] [PubMed]

F. C. Delori, “Spectrophotometer for noninvasive measurement of intrinsic fluorescence and reflectance of the ocular fundus,” Appl. Opt. 33, 7439–7452 (1994).
[CrossRef] [PubMed]

1993 (2)

M. R. Jerath, R. Chundru, S. F. Barrett, H. G. Rylander, A. J. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111, 531–534 (1993).
[CrossRef] [PubMed]

D.-U. Bartsch, W. R. Freeman, “Laser-tissue interaction and artifacts in confocal scanning laser ophthalmoscopy and tomography,” Neurosci. Biobehav. Rev. 17, 459–467 (1993).
[CrossRef] [PubMed]

1992 (1)

R. A. Schuchard, T. W. Raasch, “Retinal locus for fixation: pericentral fixation targets,” Clin. Vision Sci. 7, 511–520 (1992).

1991 (1)

H. Scherer, W. Teiwes, A. H. Clarke, “Measuring three dimensions of eye movement in dynamic situations by means of videooculography,” Acta Otolaryngol. 111, 182–187 (1991).
[CrossRef] [PubMed]

1989 (1)

R. N. Weinreb, A. W. Dreher, J. F. Bille, “Quantitative assessment of the optic nerve head with the laser tomographic scanner,” Int. Ophthalmol. 13, 25–29 (1989).
[CrossRef] [PubMed]

1987 (1)

1981 (1)

R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. BE-28, 488–492 (1981).
[CrossRef]

1980 (1)

1970 (1)

1969 (1)

D. H. Kelly, H. D. Crane, J. W. Hill, T. N. Cornsweet, “Non-contact method of measuring small eye movements and stabilizing the retinal image,” J. Opt. Soc. Am. 59, 509 (1969).

Bara, S.

Barrett, S.

E. Naess, T. Molvik, D. Ludwig, S. Barrett, S. Legowski, C. Wright, P. de Graaf, “Computer-assisted laser photocoagulation of the retina—a hybrid tracking approach,” J. Biomed. Opt. 7, 179–189 (2002).
[CrossRef] [PubMed]

Barrett, S. F.

C. H. G. Wright, R. D. Ferguson, H. G. Rylander, A. J. Welch, S. F. Barrett, “Hybrid approach to retinal tracking and laser aiming for photocoagulation,” J. Biomed. Opt. 2, 195–203 (1997).
[CrossRef] [PubMed]

C. H. G. Wright, R. D. Ferguson, S. F. Barrett, H. G. Rylander, A. J. Welch, “Hybrid eye tracking for computer-aided retinal surgery,” Biomed. Sci. Instrum. 32, 225–235 (1996).
[PubMed]

M. R. Jerath, R. Chundru, S. F. Barrett, H. G. Rylander, A. J. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111, 531–534 (1993).
[CrossRef] [PubMed]

Bartsch, D.-U.

D.-U. Bartsch, W. R. Freeman, “Laser-tissue interaction and artifacts in confocal scanning laser ophthalmoscopy and tomography,” Neurosci. Biobehav. Rev. 17, 459–467 (1993).
[CrossRef] [PubMed]

Beausencourt, E.

Berendschot, T. T. J. M.

Bernstein, P. S.

Bille, J. F.

R. N. Weinreb, A. W. Dreher, J. F. Bille, “Quantitative assessment of the optic nerve head with the laser tomographic scanner,” Int. Ophthalmol. 13, 25–29 (1989).
[CrossRef] [PubMed]

Birngruber, R.

J. H. C. Inderfurth, R. D. Ferguson, M. B. Frish, R. Birngruber, “Dynamic reflectometer for control of laser photocoagulation on the retina,” Lasers Surg. Med. 15, 54–61 (1994).
[CrossRef] [PubMed]

Bressler, N. M.

J. S. Sunness, N. M. Bressler, M. G. Maguire, “Scanning laser ophthalmoscopic analysis of the pattern of visual loss in age-related geographic atrophy of the macula,” Am. J. Ophthalmol. 119, 143–151 (1995).
[PubMed]

Burns, S. A.

Campbell, M. C. W.

Chundru, R.

M. R. Jerath, R. Chundru, S. F. Barrett, H. G. Rylander, A. J. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111, 531–534 (1993).
[CrossRef] [PubMed]

Clarke, A. H.

H. Scherer, W. Teiwes, A. H. Clarke, “Measuring three dimensions of eye movement in dynamic situations by means of videooculography,” Acta Otolaryngol. 111, 182–187 (1991).
[CrossRef] [PubMed]

Cornsweet, T. N.

T. N. Cornsweet, H. D. Crane, “Servo-controlled infrared optometer,” J. Opt. Soc. Am. 60, 548–554 (1970).
[CrossRef] [PubMed]

D. H. Kelly, H. D. Crane, J. W. Hill, T. N. Cornsweet, “Non-contact method of measuring small eye movements and stabilizing the retinal image,” J. Opt. Soc. Am. 59, 509 (1969).

Crane, H. D.

T. N. Cornsweet, H. D. Crane, “Servo-controlled infrared optometer,” J. Opt. Soc. Am. 60, 548–554 (1970).
[CrossRef] [PubMed]

D. H. Kelly, H. D. Crane, J. W. Hill, T. N. Cornsweet, “Non-contact method of measuring small eye movements and stabilizing the retinal image,” J. Opt. Soc. Am. 59, 509 (1969).

Daniel Ferguson, R.

R. Daniel Ferguson, “Servo tracking system utilizing phase-sensitive detection of reflectance variation,” U. S. patents5,767,941 (16June1998) and 5,943,115 (24August1999).

R. Daniel Ferguson, “Line-scan laser ophthalmoscope,” U. S. patent application10/171, 883, filed 14June2002.

de Graaf, P.

E. Naess, T. Molvik, D. Ludwig, S. Barrett, S. Legowski, C. Wright, P. de Graaf, “Computer-assisted laser photocoagulation of the retina—a hybrid tracking approach,” J. Biomed. Opt. 7, 179–189 (2002).
[CrossRef] [PubMed]

Delori, F. C.

Donnelly, W. J.

Dreher, A. W.

Drexler, W.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

Elsner, A. E.

D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, R. H. Webb, “Image stabilization for scanning laser ophthalmoscopy,” Opt. Express 10, 1542–1549 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

S. A. Burns, S. Marcos, A. E. Elsner, S. Bara, “Contrast improvement of confocal retinal imaging by use of phase-correcting plates,” Opt. Lett. 27, 400–402 (2002).
[CrossRef]

A. E. Elsner, M. Miura, S. A. Burns, E. Beausencourt, C. Kunze, L. M. Kelley, J. P. Walker, G. L. Wing, P. A. Raskauskas, D. C. Fletcher, Q. Zhou, A. W. Dreher, “Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration,” Opt. Express 7, 95–106 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

A. E. Elsner, L. Moraes, E. Beausencourt, A. Remky, S. A. Burns, J. J. Weiter, J. P. Walker, G. L. Wing, P. A. Raskauskas, L. M. Kelley, “Scanning laser reflectometry of retinal and subretinal tissues,” Opt. Express 6, 243–250 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

A. E. Elsner, S. A. Burns, E. Beausencourt, J. J. Weiter, “Foveal cone photopigment distributions: small alterations associated with macular pigment distribution,” Inv. Ophthalmol. Vis. Sci. 39, 2394–2404 (1998).

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vis. Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

R. D. Ferguson, A. E. Elsner, R. H. Webb, “A new approach to retinal tracking for image stabilization: initial results for the scanning laser ophthalmoscope,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 175–178.

Ermakov, I. V.

Ferguson, R. D.

D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, R. H. Webb, “Image stabilization for scanning laser ophthalmoscopy,” Opt. Express 10, 1542–1549 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

C. H. G. Wright, R. D. Ferguson, H. G. Rylander, A. J. Welch, S. F. Barrett, “Hybrid approach to retinal tracking and laser aiming for photocoagulation,” J. Biomed. Opt. 2, 195–203 (1997).
[CrossRef] [PubMed]

C. H. G. Wright, R. D. Ferguson, S. F. Barrett, H. G. Rylander, A. J. Welch, “Hybrid eye tracking for computer-aided retinal surgery,” Biomed. Sci. Instrum. 32, 225–235 (1996).
[PubMed]

J. H. C. Inderfurth, R. D. Ferguson, M. B. Frish, R. Birngruber, “Dynamic reflectometer for control of laser photocoagulation on the retina,” Lasers Surg. Med. 15, 54–61 (1994).
[CrossRef] [PubMed]

R. D. Ferguson, A. E. Elsner, R. H. Webb, “A new approach to retinal tracking for image stabilization: initial results for the scanning laser ophthalmoscope,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 175–178.

Fletcher, D. C.

Freeman, W. R.

D.-U. Bartsch, W. R. Freeman, “Laser-tissue interaction and artifacts in confocal scanning laser ophthalmoscopy and tomography,” Neurosci. Biobehav. Rev. 17, 459–467 (1993).
[CrossRef] [PubMed]

Frish, M. B.

J. H. C. Inderfurth, R. D. Ferguson, M. B. Frish, R. Birngruber, “Dynamic reflectometer for control of laser photocoagulation on the retina,” Lasers Surg. Med. 15, 54–61 (1994).
[CrossRef] [PubMed]

Fujimoto, J. G.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

Gellermann, W.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

Hammer, D. X.

Hebert, T. J.

Hill, J. W.

D. H. Kelly, H. D. Crane, J. W. Hill, T. N. Cornsweet, “Non-contact method of measuring small eye movements and stabilizing the retinal image,” J. Opt. Soc. Am. 59, 509 (1969).

Hughes, G. W.

Inderfurth, J. H. C.

J. H. C. Inderfurth, R. D. Ferguson, M. B. Frish, R. Birngruber, “Dynamic reflectometer for control of laser photocoagulation on the retina,” Lasers Surg. Med. 15, 54–61 (1994).
[CrossRef] [PubMed]

Jerath, M. R.

M. R. Jerath, R. Chundru, S. F. Barrett, H. G. Rylander, A. J. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111, 531–534 (1993).
[CrossRef] [PubMed]

Kartner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

Kelley, L. M.

Kelly, D. H.

D. H. Kelly, H. D. Crane, J. W. Hill, T. N. Cornsweet, “Non-contact method of measuring small eye movements and stabilizing the retinal image,” J. Opt. Soc. Am. 59, 509 (1969).

Kunze, C.

Legowski, S.

E. Naess, T. Molvik, D. Ludwig, S. Barrett, S. Legowski, C. Wright, P. de Graaf, “Computer-assisted laser photocoagulation of the retina—a hybrid tracking approach,” J. Biomed. Opt. 7, 179–189 (2002).
[CrossRef] [PubMed]

Lei, H.

H. Lei, R. A. Schuchard, “Using two PRLs for different lighting conditions in patients with central scotomas,” Inv. Ophthalmol. Vis. Sci. 38, 1812–1818 (1997).

Livingston, P. M.

P. M. Livingston, “Laser active tracking,” Opt. Photonics News 12, 26–31 (2001).
[CrossRef]

Ludwig, D.

E. Naess, T. Molvik, D. Ludwig, S. Barrett, S. Legowski, C. Wright, P. de Graaf, “Computer-assisted laser photocoagulation of the retina—a hybrid tracking approach,” J. Biomed. Opt. 7, 179–189 (2002).
[CrossRef] [PubMed]

Magill, J. C.

Maguire, M. G.

J. S. Sunness, N. M. Bressler, M. G. Maguire, “Scanning laser ophthalmoscopic analysis of the pattern of visual loss in age-related geographic atrophy of the macula,” Am. J. Ophthalmol. 119, 143–151 (1995).
[PubMed]

Marcos, S.

McClane, R. W.

Miura, M.

Molvik, T.

E. Naess, T. Molvik, D. Ludwig, S. Barrett, S. Legowski, C. Wright, P. de Graaf, “Computer-assisted laser photocoagulation of the retina—a hybrid tracking approach,” J. Biomed. Opt. 7, 179–189 (2002).
[CrossRef] [PubMed]

Moraes, L.

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

Naess, E.

E. Naess, T. Molvik, D. Ludwig, S. Barrett, S. Legowski, C. Wright, P. de Graaf, “Computer-assisted laser photocoagulation of the retina—a hybrid tracking approach,” J. Biomed. Opt. 7, 179–189 (2002).
[CrossRef] [PubMed]

Pomerantzeff, O.

Queener, H.

Raasch, T. W.

R. A. Schuchard, T. W. Raasch, “Retinal locus for fixation: pericentral fixation targets,” Clin. Vision Sci. 7, 511–520 (1992).

Raskauskas, P. A.

Remky, A.

Romero-Borja, F.

Roorda, A.

Rylander, H. G.

C. H. G. Wright, R. D. Ferguson, H. G. Rylander, A. J. Welch, S. F. Barrett, “Hybrid approach to retinal tracking and laser aiming for photocoagulation,” J. Biomed. Opt. 2, 195–203 (1997).
[CrossRef] [PubMed]

C. H. G. Wright, R. D. Ferguson, S. F. Barrett, H. G. Rylander, A. J. Welch, “Hybrid eye tracking for computer-aided retinal surgery,” Biomed. Sci. Instrum. 32, 225–235 (1996).
[PubMed]

M. R. Jerath, R. Chundru, S. F. Barrett, H. G. Rylander, A. J. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111, 531–534 (1993).
[CrossRef] [PubMed]

Scherer, H.

H. Scherer, W. Teiwes, A. H. Clarke, “Measuring three dimensions of eye movement in dynamic situations by means of videooculography,” Acta Otolaryngol. 111, 182–187 (1991).
[CrossRef] [PubMed]

Schuchard, R. A.

H. Lei, R. A. Schuchard, “Using two PRLs for different lighting conditions in patients with central scotomas,” Inv. Ophthalmol. Vis. Sci. 38, 1812–1818 (1997).

R. A. Schuchard, T. W. Raasch, “Retinal locus for fixation: pericentral fixation targets,” Clin. Vision Sci. 7, 511–520 (1992).

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

Sunness, J. S.

J. S. Sunness, N. M. Bressler, M. G. Maguire, “Scanning laser ophthalmoscopic analysis of the pattern of visual loss in age-related geographic atrophy of the macula,” Am. J. Ophthalmol. 119, 143–151 (1995).
[PubMed]

Teiwes, W.

H. Scherer, W. Teiwes, A. H. Clarke, “Measuring three dimensions of eye movement in dynamic situations by means of videooculography,” Acta Otolaryngol. 111, 182–187 (1991).
[CrossRef] [PubMed]

van de Kraats, J.

van Norren, D.

Walker, J. P.

Webb, R. H.

D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, R. H. Webb, “Image stabilization for scanning laser ophthalmoscopy,” Opt. Express 10, 1542–1549 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

R. H. Webb, G. W. Hughes, F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987).
[CrossRef] [PubMed]

R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. BE-28, 488–492 (1981).
[CrossRef]

R. H. Webb, G. W. Hughes, O. Pomerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt. 19, 2991–2997 (1980).
[CrossRef] [PubMed]

R. D. Ferguson, A. E. Elsner, R. H. Webb, “A new approach to retinal tracking for image stabilization: initial results for the scanning laser ophthalmoscope,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 175–178.

Weinreb, R. N.

R. N. Weinreb, A. W. Dreher, J. F. Bille, “Quantitative assessment of the optic nerve head with the laser tomographic scanner,” Int. Ophthalmol. 13, 25–29 (1989).
[CrossRef] [PubMed]

Weiter, J. J.

A. E. Elsner, L. Moraes, E. Beausencourt, A. Remky, S. A. Burns, J. J. Weiter, J. P. Walker, G. L. Wing, P. A. Raskauskas, L. M. Kelley, “Scanning laser reflectometry of retinal and subretinal tissues,” Opt. Express 6, 243–250 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

A. E. Elsner, S. A. Burns, E. Beausencourt, J. J. Weiter, “Foveal cone photopigment distributions: small alterations associated with macular pigment distribution,” Inv. Ophthalmol. Vis. Sci. 39, 2394–2404 (1998).

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vis. Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

Welch, A. J.

C. H. G. Wright, R. D. Ferguson, H. G. Rylander, A. J. Welch, S. F. Barrett, “Hybrid approach to retinal tracking and laser aiming for photocoagulation,” J. Biomed. Opt. 2, 195–203 (1997).
[CrossRef] [PubMed]

C. H. G. Wright, R. D. Ferguson, S. F. Barrett, H. G. Rylander, A. J. Welch, “Hybrid eye tracking for computer-aided retinal surgery,” Biomed. Sci. Instrum. 32, 225–235 (1996).
[PubMed]

M. R. Jerath, R. Chundru, S. F. Barrett, H. G. Rylander, A. J. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111, 531–534 (1993).
[CrossRef] [PubMed]

White, M. A.

Wing, G. L.

Wright, C.

E. Naess, T. Molvik, D. Ludwig, S. Barrett, S. Legowski, C. Wright, P. de Graaf, “Computer-assisted laser photocoagulation of the retina—a hybrid tracking approach,” J. Biomed. Opt. 7, 179–189 (2002).
[CrossRef] [PubMed]

Wright, C. H. G.

C. H. G. Wright, R. D. Ferguson, H. G. Rylander, A. J. Welch, S. F. Barrett, “Hybrid approach to retinal tracking and laser aiming for photocoagulation,” J. Biomed. Opt. 2, 195–203 (1997).
[CrossRef] [PubMed]

C. H. G. Wright, R. D. Ferguson, S. F. Barrett, H. G. Rylander, A. J. Welch, “Hybrid eye tracking for computer-aided retinal surgery,” Biomed. Sci. Instrum. 32, 225–235 (1996).
[PubMed]

Zagers, N. P. A.

Zhou, Q.

Acta Otolaryngol. (1)

H. Scherer, W. Teiwes, A. H. Clarke, “Measuring three dimensions of eye movement in dynamic situations by means of videooculography,” Acta Otolaryngol. 111, 182–187 (1991).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (1)

J. S. Sunness, N. M. Bressler, M. G. Maguire, “Scanning laser ophthalmoscopic analysis of the pattern of visual loss in age-related geographic atrophy of the macula,” Am. J. Ophthalmol. 119, 143–151 (1995).
[PubMed]

Appl. Opt. (4)

Arch. Ophthalmol. (1)

M. R. Jerath, R. Chundru, S. F. Barrett, H. G. Rylander, A. J. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111, 531–534 (1993).
[CrossRef] [PubMed]

Biomed. Sci. Instrum. (1)

C. H. G. Wright, R. D. Ferguson, S. F. Barrett, H. G. Rylander, A. J. Welch, “Hybrid eye tracking for computer-aided retinal surgery,” Biomed. Sci. Instrum. 32, 225–235 (1996).
[PubMed]

Clin. Vision Sci. (1)

R. A. Schuchard, T. W. Raasch, “Retinal locus for fixation: pericentral fixation targets,” Clin. Vision Sci. 7, 511–520 (1992).

IEEE Trans. Biomed. Eng. (1)

R. H. Webb, G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. BE-28, 488–492 (1981).
[CrossRef]

Int. Ophthalmol. (1)

R. N. Weinreb, A. W. Dreher, J. F. Bille, “Quantitative assessment of the optic nerve head with the laser tomographic scanner,” Int. Ophthalmol. 13, 25–29 (1989).
[CrossRef] [PubMed]

Inv. Ophthalmol. Vis. Sci. (2)

A. E. Elsner, S. A. Burns, E. Beausencourt, J. J. Weiter, “Foveal cone photopigment distributions: small alterations associated with macular pigment distribution,” Inv. Ophthalmol. Vis. Sci. 39, 2394–2404 (1998).

H. Lei, R. A. Schuchard, “Using two PRLs for different lighting conditions in patients with central scotomas,” Inv. Ophthalmol. Vis. Sci. 38, 1812–1818 (1997).

J. Biomed. Opt. (2)

C. H. G. Wright, R. D. Ferguson, H. G. Rylander, A. J. Welch, S. F. Barrett, “Hybrid approach to retinal tracking and laser aiming for photocoagulation,” J. Biomed. Opt. 2, 195–203 (1997).
[CrossRef] [PubMed]

E. Naess, T. Molvik, D. Ludwig, S. Barrett, S. Legowski, C. Wright, P. de Graaf, “Computer-assisted laser photocoagulation of the retina—a hybrid tracking approach,” J. Biomed. Opt. 7, 179–189 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

T. N. Cornsweet, H. D. Crane, “Servo-controlled infrared optometer,” J. Opt. Soc. Am. 60, 548–554 (1970).
[CrossRef] [PubMed]

D. H. Kelly, H. D. Crane, J. W. Hill, T. N. Cornsweet, “Non-contact method of measuring small eye movements and stabilizing the retinal image,” J. Opt. Soc. Am. 59, 509 (1969).

Lasers Surg. Med. (1)

J. H. C. Inderfurth, R. D. Ferguson, M. B. Frish, R. Birngruber, “Dynamic reflectometer for control of laser photocoagulation on the retina,” Lasers Surg. Med. 15, 54–61 (1994).
[CrossRef] [PubMed]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502–507 (2001).
[CrossRef] [PubMed]

Neurosci. Biobehav. Rev. (1)

D.-U. Bartsch, W. R. Freeman, “Laser-tissue interaction and artifacts in confocal scanning laser ophthalmoscopy and tomography,” Neurosci. Biobehav. Rev. 17, 459–467 (1993).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Opt. Photonics News (1)

P. M. Livingston, “Laser active tracking,” Opt. Photonics News 12, 26–31 (2001).
[CrossRef]

Vis. Res. (1)

A. E. Elsner, S. A. Burns, J. J. Weiter, F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vis. Res. 36, 191–205 (1996).
[CrossRef] [PubMed]

Other (3)

R. D. Ferguson, A. E. Elsner, R. H. Webb, “A new approach to retinal tracking for image stabilization: initial results for the scanning laser ophthalmoscope,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 175–178.

R. Daniel Ferguson, “Line-scan laser ophthalmoscope,” U. S. patent application10/171, 883, filed 14June2002.

R. Daniel Ferguson, “Servo tracking system utilizing phase-sensitive detection of reflectance variation,” U. S. patents5,767,941 (16June1998) and 5,943,115 (24August1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Photograph of TSLO (instrumentation boxes and PC not shown).

Fig. 2
Fig. 2

Optical layout for the TSLO. Distances are not to scale. The view is from the side of the instrument although some modules are perpendicular to that shown in figure. Beams depicted by solid rays are incident upon the retina and beams depicted by open rays are reflected light from the retina. Beam after cylindrical lens L5 is focused in only one axis. OL, ophthalmoscopic lens; R0, retinal plane; R1, retinal conjugate; P0, pupil plane; P1, pupil conjugate; FT, fixation target; P, pellicle beam splitter; SL, f/2 scan lens; TG, tracking galvanometers; DS, dither scanners; IG, image galvanometer; SS, stimulus source; D1‐D4, long-pass dichroic beam splitters; F1‐F4, fiber ports, L1‐L2, f/2 lenses; L3‐L4, f/3 lenses, L5, cylindrical lens; L6‐L8, f/2 lenses; S1‐S2, beam separators; G, grating.

Fig. 3
Fig. 3

Field of regard for four ophthalmoscopic lenses (Volk). (a) 66 D, (b) 40 D, (c) 30 D, (d) 20 D. Single video frame is displayed in each case.

Fig. 4
Fig. 4

Signal processing for retinal tracking system.

Fig. 5
Fig. 5

Error signal generated from sweeping tracker beam across target in x direction.

Fig. 6
Fig. 6

Block diagram of system instrumentation. See text for details.

Fig. 7
Fig. 7

DAQ GUI.

Fig. 8
Fig. 8

Calibrated data from tracking on high-contrast targets. The system was able to track high-contrast targets spinning at velocities in excess of 60 rps (tangential velocity >6300 deg/s).

Fig. 9
Fig. 9

Tracking on rapid, large saccades. (a) Image of 224 coadded frames (∼15 s) with retinal tracking. (b) Image of 178 coadded frames (∼12 s) without retinal tracking. (c) Position signals acquired from galvanometers during tracking. Region indicated by box is shown in Fig. 10. (d) Reflectometer signal during tracking. S, superior; I, inferior; T, temporal; N, nasal.

Fig. 10
Fig. 10

The x-position signal shown in Fig. 9 with (a) the time scale range reduced to a small region around a large saccade to illustrate tracking speed and (b) the amplitude scale range reduced to a small region with little eye movement to illustrate rms accuracy during lock.

Fig. 11
Fig. 11

(a) Image of coadded frames from three different runs (56, 51, and 44 frames in the three runs) during successive lock, intentional loss of lock, and relock. (b) Cross section of major blood vessel indicated by line in (a).

Fig. 12
Fig. 12

Images of coadded frames from long-duration tracking experiment. (a) Subject 1: 763 frames (∼51 s). (b) Subject 2: 965 frames (∼64 s).

Tables (1)

Tables Icon

Table 1 Measurement of Interframe and Relock Accuracy from Three Successive Tracking Runs by Analysis of Retinal Blood Vessel Edge Location (pixel)

Metrics