Abstract

Time-resolved and spatially resolved measurements of the diffuse reflectance from biological tissue are two well-established techniques for extracting the reduced scattering and absorption coefficients. We have performed a comparison study of the performance of a spatially resolved and a time-resolved instrument at wavelengths 660 and 785 nm and also of an integrating-sphere setup at 550–800 nm. The first system records the diffuse reflectance from a diode laser by means of a fiber bundle probe in contact with the sample. The time-resolved system utilizes picosecond laser pulses and a single-photon-counting detection scheme. We extracted the optical properties by calibration using known standards for the spatially resolved system, by fitting to the diffusion equation for the time-resolved system, and by using an inverse Monte Carlo model for the integrating sphere. The measurements were performed on a set of solid epoxy tissue phantoms. The results showed less than 10% difference in the evaluation of the reduced scattering coefficient among the systems for the phantoms in the range 9–20 cm-1, and absolute differences of less than 0.05 cm-1 for the absorption coefficient in the interval 0.05–0.30 cm-1.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
    [CrossRef] [PubMed]
  2. G. A. Wagnières, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
    [PubMed]
  3. G. J. Müller, A. Roggan, eds., Laser-Induced Interstitial Thermotherapy (SPIE Press, Bellingham, Wash., 1995).
  4. K. Ivarsson, J. Olsrud, C. Sturesson, P. H. Möller, B. R. Persson, K.-G. Tranberg, “Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four fibers,” Lasers Surg. Med. 22, 86–96 (1998).
    [CrossRef]
  5. A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995).
    [CrossRef] [PubMed]
  6. T. Johansson, M. S. Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002).
    [CrossRef] [PubMed]
  7. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
    [CrossRef]
  8. C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
    [CrossRef]
  9. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  10. S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash.1993), pp. 211–226.
  11. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
    [CrossRef] [PubMed]
  12. R. Bays, G. Wagnières, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
    [CrossRef] [PubMed]
  13. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
    [CrossRef] [PubMed]
  14. T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissue-like turbid media over a broad spectral range using a non-contact Fourier interferometric, hyperspectral imaging system,” Appl. Opt. 39, 6487–6497 (2000).
    [CrossRef]
  15. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001).
    [CrossRef]
  16. S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
    [CrossRef] [PubMed]
  17. S. Andersson-Engels, R. Berg, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
    [CrossRef] [PubMed]
  18. M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
    [CrossRef] [PubMed]
  19. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992).
    [CrossRef] [PubMed]
  20. K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994).
    [CrossRef] [PubMed]
  21. J. Kölzer, G. Mitic, J. Otto, W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Müller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 143–152 (1995).
    [CrossRef]
  22. X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “True scattering coefficients of turbid media,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 571–574 (1995).
    [CrossRef]
  23. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
    [CrossRef]
  24. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [CrossRef] [PubMed]
  25. A. Roggan, H. J. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–46 (1995).
    [CrossRef]
  26. A. M. K. Nilsson, C. Sturesson, D. L. Liu, S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998).
    [CrossRef]
  27. J. S. Dam, T. Dalgaard, P. E. Fabricius, S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39, 1202–1209 (2000).
    [CrossRef]
  28. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  29. K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
    [CrossRef]
  30. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
    [CrossRef] [PubMed]
  31. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).
  32. G. de Vries, J. F. Beek, G. W. Lucassen, M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944–947 (1999).
    [CrossRef]
  33. M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
    [CrossRef]
  34. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducable phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
    [CrossRef] [PubMed]
  35. I. V. Yaroslavsky, A. N. Yaroslavsky, V. V. Tuchin, H.-J. Schwarzmaier, “Effect of the scattering delay on time-dependent photon migration in turbid media,” Appl. Opt. 36, 6529–6538 (1997).
    [CrossRef]
  36. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
    [CrossRef] [PubMed]

2002 (2)

2001 (2)

2000 (2)

1999 (3)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

G. de Vries, J. F. Beek, G. W. Lucassen, M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944–947 (1999).
[CrossRef]

1998 (3)

G. A. Wagnières, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[PubMed]

K. Ivarsson, J. Olsrud, C. Sturesson, P. H. Möller, B. R. Persson, K.-G. Tranberg, “Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four fibers,” Lasers Surg. Med. 22, 86–96 (1998).
[CrossRef]

A. M. K. Nilsson, C. Sturesson, D. L. Liu, S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998).
[CrossRef]

1997 (1)

1996 (4)

1995 (3)

1994 (3)

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

1993 (2)

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

1992 (3)

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

1990 (1)

1989 (1)

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
[CrossRef] [PubMed]

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

af Klinteberg, C.

Albrecht, H. J.

A. Roggan, H. J. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–46 (1995).
[CrossRef]

Alfano, R. R.

X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “True scattering coefficients of turbid media,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 571–574 (1995).
[CrossRef]

Andersson-Engels, S.

T. Johansson, M. S. Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002).
[CrossRef] [PubMed]

J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001).
[CrossRef]

T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissue-like turbid media over a broad spectral range using a non-contact Fourier interferometric, hyperspectral imaging system,” Appl. Opt. 39, 6487–6497 (2000).
[CrossRef]

J. S. Dam, T. Dalgaard, P. E. Fabricius, S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39, 1202–1209 (2000).
[CrossRef]

A. M. K. Nilsson, C. Sturesson, D. L. Liu, S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998).
[CrossRef]

M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[CrossRef] [PubMed]

A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, O. Jarlman, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

Arridge, S. R.

Aruna, P.

Barbour, R. L.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Bays, R.

Beek, J. F.

G. de Vries, J. F. Beek, G. W. Lucassen, M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944–947 (1999).
[CrossRef]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

Berg, R.

Bevilacqua, F.

Braichotte, D.

Carraresi, L.

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

Chance, B.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Dalgaard, T.

Dam, J. S.

De Blasi, R. A.

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

de Vries, G.

G. de Vries, J. F. Beek, G. W. Lucassen, M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944–947 (1999).
[CrossRef]

Dehghani, H.

Delpy, D. T.

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducable phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Dörschel, K.

A. Roggan, H. J. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–46 (1995).
[CrossRef]

Fabricius, P. E.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Feng, T.-C.

Ferrari, M.

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

Firbank, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducable phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

Furutsu, K.

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

Gutsche, A.

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash.1993), pp. 211–226.

Haskell, R. C.

Hebden, J. C.

Hefetz, Y.

Hibst, R.

Hielscher, A. H.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Hillman, E. M. C.

Ho, P. P.

X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “True scattering coefficients of turbid media,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 571–574 (1995).
[CrossRef]

Ivarsson, K.

K. Ivarsson, J. Olsrud, C. Sturesson, P. H. Möller, B. R. Persson, K.-G. Tranberg, “Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four fibers,” Lasers Surg. Med. 22, 86–96 (1998).
[CrossRef]

Jacques, S. L.

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
[CrossRef] [PubMed]

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash.1993), pp. 211–226.

Jarlman, O.

Johansson, T.

Kienle, A.

Kölzer, J.

J. Kölzer, G. Mitic, J. Otto, W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Müller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 143–152 (1995).
[CrossRef]

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Lasker, J. M.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Liang, X.

X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “True scattering coefficients of turbid media,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 571–574 (1995).
[CrossRef]

Lilge, L.

Liu, D. L.

Locker, M.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Lucassen, G. W.

G. de Vries, J. F. Beek, G. W. Lucassen, M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944–947 (1999).
[CrossRef]

Madsen, S. J.

McAdams, M. S.

Minet, O.

A. Roggan, H. J. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–46 (1995).
[CrossRef]

Mitic, G.

J. Kölzer, G. Mitic, J. Otto, W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Müller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 143–152 (1995).
[CrossRef]

Möller, P. H.

K. Ivarsson, J. Olsrud, C. Sturesson, P. H. Möller, B. R. Persson, K.-G. Tranberg, “Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four fibers,” Lasers Surg. Med. 22, 86–96 (1998).
[CrossRef]

Monnier, P.

Müller, G. J.

A. Roggan, H. J. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–46 (1995).
[CrossRef]

Nilsson, A. M. K.

Oda, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducable phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Ohta, K.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

Olsrud, J.

K. Ivarsson, J. Olsrud, C. Sturesson, P. H. Möller, B. R. Persson, K.-G. Tranberg, “Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four fibers,” Lasers Surg. Med. 22, 86–96 (1998).
[CrossRef]

Osei, E. K.

Otto, J.

J. Kölzer, G. Mitic, J. Otto, W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Müller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 143–152 (1995).
[CrossRef]

Park, Y. D.

Patterson, M. S.

Pedersen, C. B.

Persson, B. R.

K. Ivarsson, J. Olsrud, C. Sturesson, P. H. Möller, B. R. Persson, K.-G. Tranberg, “Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four fibers,” Lasers Surg. Med. 22, 86–96 (1998).
[CrossRef]

Pham, T. H.

Pickering, J. W.

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Prahl, S. A.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

Richards-Kortum, R.

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Robert, D.

Roggan, A.

A. Roggan, H. J. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–46 (1995).
[CrossRef]

Savary, J. F.

Schmitz, C. H.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Schwartz, J.

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash.1993), pp. 211–226.

Schwarzmaier, H.-J.

Schweiger, M.

Sevick-Muraca, E.

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Spott, T.

Star, W. M.

G. A. Wagnières, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[PubMed]

Steiner, R.

Stenberg, M.

Sterenborg, H. J. C. M.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

Sturesson, C.

A. M. K. Nilsson, C. Sturesson, D. L. Liu, S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998).
[CrossRef]

K. Ivarsson, J. Olsrud, C. Sturesson, P. H. Möller, B. R. Persson, K.-G. Tranberg, “Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four fibers,” Lasers Surg. Med. 22, 86–96 (1998).
[CrossRef]

Suzuki, K.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

Svaasand, L. O.

Svanberg, K.

Svanberg, S.

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

Thompson, M. S.

Tittel, F.

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash.1993), pp. 211–226.

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Tranberg, K.-G.

K. Ivarsson, J. Olsrud, C. Sturesson, P. H. Möller, B. R. Persson, K.-G. Tranberg, “Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four fibers,” Lasers Surg. Med. 22, 86–96 (1998).
[CrossRef]

Tromberg, B. J.

Tsay, T.-T.

Tuchin, V. V.

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

van den Bergh, H.

van Gemert, M. J. C.

G. de Vries, J. F. Beek, G. W. Lucassen, M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944–947 (1999).
[CrossRef]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

van Wieringen, N.

Veenstra, H.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

Wagnières, G.

Wagnières, G. A.

G. A. Wagnières, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[PubMed]

Wang, L.

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash.1993), pp. 211–226.

X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “True scattering coefficients of turbid media,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 571–574 (1995).
[CrossRef]

Wei, Q.

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

Yamada, Y.

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

Yamashita, Y.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

Yaroslavsky, A. N.

Yaroslavsky, I. V.

Zaccanti, G.

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

Zinth, W.

J. Kölzer, G. Mitic, J. Otto, W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Müller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 143–152 (1995).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Appl. Opt. (13)

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

A. M. K. Nilsson, C. Sturesson, D. L. Liu, S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998).
[CrossRef]

J. S. Dam, T. Dalgaard, P. E. Fabricius, S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39, 1202–1209 (2000).
[CrossRef]

A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995).
[CrossRef] [PubMed]

M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[CrossRef] [PubMed]

R. Bays, G. Wagnières, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
[CrossRef] [PubMed]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

I. V. Yaroslavsky, A. N. Yaroslavsky, V. V. Tuchin, H.-J. Schwarzmaier, “Effect of the scattering delay on time-dependent photon migration in turbid media,” Appl. Opt. 36, 6529–6538 (1997).
[CrossRef]

T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissue-like turbid media over a broad spectral range using a non-contact Fourier interferometric, hyperspectral imaging system,” Appl. Opt. 39, 6487–6497 (2000).
[CrossRef]

J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001).
[CrossRef]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001).
[CrossRef]

T. Johansson, M. S. Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. de Vries, J. F. Beek, G. W. Lucassen, M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944–947 (1999).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
[CrossRef] [PubMed]

Invest. Radiol. (1)

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy. Phantom and preliminary in vivo results,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Photochem. Photobiol. B (1)

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

K. Ivarsson, J. Olsrud, C. Sturesson, P. H. Möller, B. R. Persson, K.-G. Tranberg, “Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four fibers,” Lasers Surg. Med. 22, 86–96 (1998).
[CrossRef]

Med. Phys. (2)

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996).
[CrossRef] [PubMed]

Opt. Lett. (1)

Photochem. Photobiol. (1)

G. A. Wagnières, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[PubMed]

Phys. Med. Biol. (3)

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducable phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999).
[CrossRef] [PubMed]

Phys. Rev. E (1)

K. Furutsu, Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E 50, 3634–3640 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Other (6)

G. J. Müller, A. Roggan, eds., Laser-Induced Interstitial Thermotherapy (SPIE Press, Bellingham, Wash., 1995).

S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, F. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash.1993), pp. 211–226.

J. Kölzer, G. Mitic, J. Otto, W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Müller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 143–152 (1995).
[CrossRef]

X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “True scattering coefficients of turbid media,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 571–574 (1995).
[CrossRef]

A. Roggan, H. J. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–46 (1995).
[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Spectral characteristics of the phantoms as measured with the integrating sphere. (a) μ s ′ spectra presented as averages of the phantoms with the same amount of TiO added, corresponding to A–E in Table 1. (b) μ a spectra presented as averages of the 1–5 phantoms in Table 1. (c) μ s spectra for A–E. The anisotropy factor g is presented in (d) as an average of all phantoms. Error bars represent one standard deviation.

Fig. 2
Fig. 2

Values of μ s ′ and μ a of the solid phantoms, as determined by the three systems, at 660 nm. The results are presented as functions of phantoms with the same amounts of TiO or black pigment added, according to Table 1. (a), (d) μ s ′ and μ a , respectively, from the fiber-probe system; (b), (e) corresponding results from the time-resolved system; (c), (f) corresponding results from the integrating-sphere system. Error bars represent one standard deviation for repeated measurements. Note that, for the integrating sphere, repeated measurements were performed only for phantoms A1, A5, C3, E1, and E5.

Tables (3)

Tables Icon

Table 1 Concentrations of TiO and Black Pigment Added to the Phantoms

Tables Icon

Table 2 Results of Measurements of the Meat Sample

Tables Icon

Table 3 Results of Measurements of Forearms of the Experimentersa

Metrics