Abstract

We describe the use of a synchronously pumped ringdown cavity for measuring total optical losses, absorption and scattering, in thin optical films of arbitrary thickness on transparent substrates. This technique is compared with a single-pulse ringdown cavity regime and is shown to have a superior signal-to-noise ratio and resolution. We also provide an analysis of the factors affecting the resolution of the technique. Using this ringdown cavity pumped by a conventional mode-locked Ti:sapphire laser, we experimentally detect losses of only 58 ± 9 and 112 ± 9 parts per million in Ta2O5 and SiO2 films, respectively. To our knowledge, these are so far the lowest losses measured in thin films on stand-alone transparent substrates.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  2. D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
    [CrossRef]
  3. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [CrossRef]
  4. G. Rempe, R. J. Thompson, H. J. Kimble, R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
    [CrossRef] [PubMed]
  5. P. Roche, M. Commandré, L. Escoubas, J. P. Borgogno, G. Albrand, B. Lazaridès, “Substrate effects on absorption of coated surfaces,” Appl. Opt. 35, 5059–5066 (1996).
    [CrossRef] [PubMed]
  6. A. Hordvik, “Measurement techniques for small absorption coefficients: recent advances,” Appl. Opt. 16, 2827–2833 (1977).
    [CrossRef] [PubMed]
  7. R. Lalezari, M. Kriewaldt, D. Long, “A method for determining dielectric losses of thin films,” in Optical Interference Coatings, Vol. 15 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 328–330.
  8. R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
    [CrossRef]
  9. S. L. Logunov, “Cavity ringdown detection of losses in thin films in the telecommunication wavelength window,” Appl. Opt. 40, 1570–1573 (2001).
    [CrossRef]
  10. E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
    [CrossRef]
  11. G. T. Maker, A. I. Ferguson, “Efficient frequency doubling of a mode-locked diode-laser-pumped Nd:YAG laser,” Appl. Phys. Lett. 55, 1158–1160 (1989).
    [CrossRef]
  12. V. P. Yanovsky, F. W. Wise, “Frequency doubling of 100-fs pulses with 50% efficiency by use of a resonant enhancement cavity,” Opt. Lett. 19, 1952–1954 (1994).
    [CrossRef] [PubMed]
  13. R. J. Jones, J. Ye, “Femtosecond pulse amplification by coherent addition in a passive optical cavity,” Opt. Lett. 27, 1848–1850 (2002).
    [CrossRef]
  14. G. A. Marcus, H. A. Schwettman, “Cavity ringdown spectroscopy of thin films in the mid-infrared,” Appl. Opt. 41, 5167–5171 (2002).
    [CrossRef] [PubMed]
  15. C. Montcalm, S. M. Lee, D. Burtner, A. Dummer, D. Siegfried, I. Wagner, M. Watanabe, “High-rate dual ion beam sputtering deposition technology for optical telecommunication filters,” in Proceedings of the Forty-Fifth Annual Technical Conference of Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2002), pp. 245–249.
  16. C. K. Carniglia, “Scalar scattering theory for multiplayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
    [CrossRef]
  17. J. R. Taylor, An Introduction to Error Analysis (University Science, Sausalito, Calif., 1997).

2002 (2)

2001 (1)

1999 (2)

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

1996 (1)

1995 (1)

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

1994 (1)

1993 (1)

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

1992 (1)

1989 (1)

G. T. Maker, A. I. Ferguson, “Efficient frequency doubling of a mode-locked diode-laser-pumped Nd:YAG laser,” Appl. Phys. Lett. 55, 1158–1160 (1989).
[CrossRef]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1979 (1)

C. K. Carniglia, “Scalar scattering theory for multiplayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
[CrossRef]

1977 (1)

Albrand, G.

Borgogno, J. P.

Burtner, D.

C. Montcalm, S. M. Lee, D. Burtner, A. Dummer, D. Siegfried, I. Wagner, M. Watanabe, “High-rate dual ion beam sputtering deposition technology for optical telecommunication filters,” in Proceedings of the Forty-Fifth Annual Technical Conference of Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2002), pp. 245–249.

Carniglia, C. K.

C. K. Carniglia, “Scalar scattering theory for multiplayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
[CrossRef]

Commandré, M.

Crosson, E. R.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Dummer, A.

C. Montcalm, S. M. Lee, D. Burtner, A. Dummer, D. Siegfried, I. Wagner, M. Watanabe, “High-rate dual ion beam sputtering deposition technology for optical telecommunication filters,” in Proceedings of the Forty-Fifth Annual Technical Conference of Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2002), pp. 245–249.

Engeln, R.

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

Escoubas, L.

Ferguson, A. I.

G. T. Maker, A. I. Ferguson, “Efficient frequency doubling of a mode-locked diode-laser-pumped Nd:YAG laser,” Appl. Phys. Lett. 55, 1158–1160 (1989).
[CrossRef]

Haar, P.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

Hordvik, A.

Jones, R. J.

Kimble, H. J.

Kriewaldt, M.

R. Lalezari, M. Kriewaldt, D. Long, “A method for determining dielectric losses of thin films,” in Optical Interference Coatings, Vol. 15 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 328–330.

Lalezari, R.

G. Rempe, R. J. Thompson, H. J. Kimble, R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
[CrossRef] [PubMed]

R. Lalezari, M. Kriewaldt, D. Long, “A method for determining dielectric losses of thin films,” in Optical Interference Coatings, Vol. 15 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 328–330.

Lazaridès, B.

Lee, S. M.

C. Montcalm, S. M. Lee, D. Burtner, A. Dummer, D. Siegfried, I. Wagner, M. Watanabe, “High-rate dual ion beam sputtering deposition technology for optical telecommunication filters,” in Proceedings of the Forty-Fifth Annual Technical Conference of Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2002), pp. 245–249.

Lehmann, K. K.

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

Logunov, S. L.

Long, D.

R. Lalezari, M. Kriewaldt, D. Long, “A method for determining dielectric losses of thin films,” in Optical Interference Coatings, Vol. 15 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 328–330.

Maker, G. T.

G. T. Maker, A. I. Ferguson, “Efficient frequency doubling of a mode-locked diode-laser-pumped Nd:YAG laser,” Appl. Phys. Lett. 55, 1158–1160 (1989).
[CrossRef]

Marcus, G. A.

G. A. Marcus, H. A. Schwettman, “Cavity ringdown spectroscopy of thin films in the mid-infrared,” Appl. Opt. 41, 5167–5171 (2002).
[CrossRef] [PubMed]

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

Meijer, G.

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

Montcalm, C.

C. Montcalm, S. M. Lee, D. Burtner, A. Dummer, D. Siegfried, I. Wagner, M. Watanabe, “High-rate dual ion beam sputtering deposition technology for optical telecommunication filters,” in Proceedings of the Forty-Fifth Annual Technical Conference of Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2002), pp. 245–249.

O’Keefe, A.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Paldus, B. A.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

Rempe, G.

Roche, P.

Romanini, D.

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

Schwettman, H. A.

G. A. Marcus, H. A. Schwettman, “Cavity ringdown spectroscopy of thin films in the mid-infrared,” Appl. Opt. 41, 5167–5171 (2002).
[CrossRef] [PubMed]

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

Siegfried, D.

C. Montcalm, S. M. Lee, D. Burtner, A. Dummer, D. Siegfried, I. Wagner, M. Watanabe, “High-rate dual ion beam sputtering deposition technology for optical telecommunication filters,” in Proceedings of the Forty-Fifth Annual Technical Conference of Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2002), pp. 245–249.

Spence, T. G.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

Taylor, J. R.

J. R. Taylor, An Introduction to Error Analysis (University Science, Sausalito, Calif., 1997).

Thompson, R. J.

van Roij, A. J. A.

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

von Helden, G.

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

Wagner, I.

C. Montcalm, S. M. Lee, D. Burtner, A. Dummer, D. Siegfried, I. Wagner, M. Watanabe, “High-rate dual ion beam sputtering deposition technology for optical telecommunication filters,” in Proceedings of the Forty-Fifth Annual Technical Conference of Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2002), pp. 245–249.

Watanabe, M.

C. Montcalm, S. M. Lee, D. Burtner, A. Dummer, D. Siegfried, I. Wagner, M. Watanabe, “High-rate dual ion beam sputtering deposition technology for optical telecommunication filters,” in Proceedings of the Forty-Fifth Annual Technical Conference of Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2002), pp. 245–249.

Wise, F. W.

Yanovsky, V. P.

Ye, J.

Zalicki, P.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zare, R. N.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

G. T. Maker, A. I. Ferguson, “Efficient frequency doubling of a mode-locked diode-laser-pumped Nd:YAG laser,” Appl. Phys. Lett. 55, 1158–1160 (1989).
[CrossRef]

J. Chem. Phys. (3)

R. Engeln, G. von Helden, A. J. A. van Roij, G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732–2733 (1999).
[CrossRef]

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Opt. Eng. (1)

C. K. Carniglia, “Scalar scattering theory for multiplayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
[CrossRef]

Opt. Lett. (3)

Rev. Sci. Instrum. (2)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

Other (3)

R. Lalezari, M. Kriewaldt, D. Long, “A method for determining dielectric losses of thin films,” in Optical Interference Coatings, Vol. 15 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 328–330.

C. Montcalm, S. M. Lee, D. Burtner, A. Dummer, D. Siegfried, I. Wagner, M. Watanabe, “High-rate dual ion beam sputtering deposition technology for optical telecommunication filters,” in Proceedings of the Forty-Fifth Annual Technical Conference of Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2002), pp. 245–249.

J. R. Taylor, An Introduction to Error Analysis (University Science, Sausalito, Calif., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated single-pass reflection losses versus angle of incidence in 1.1-μm SiO2 (n = 1.483) and 0.74-μm Ta2O5 (n = 2.10) films deposited on 2-mm-thick fused-silica substrates (n = 1.453).

Fig. 2
Fig. 2

Schematic diagram of the synchronously pumped ringdown cavity experimental setup. The ringdown cavity formed by two high reflecting (HR) mirrors is half in length with respect to the Ti:sapphire laser cavity. The evolution of the pulse generated by the laser is schematically shown above the line depicting the beam path. AOM, acousto-optic modulator.

Fig. 3
Fig. 3

Typical ringdown decay waveforms obtained in the fused-silica substrate and in SiO2 and Ta2O5 thin films.

Fig. 4
Fig. 4

Linear scale decay waveform obtained in a 3.7-μm Ta2O5 film deposited on a fused-silica substrate.

Fig. 5
Fig. 5

Histogram of 64 measurements of the ringdown decay signal in 1.1-μm SiO2 film. The sample was realigned in the cavity for each measurement. SD, standard deviation.

Fig. 6
Fig. 6

Ringdown decay waveforms obtained in a fused-silica substrate at normal orientation and at a Brewster angle.

Fig. 7
Fig. 7

Summary of the losses measured in films with varying thicknesses. Solid symbols, films on transparent substrates measured at 800 nm; open symbols, films deposited on mirrors measured at 1550 nm. For both the SiO2 and the Ta2O5, we observe a nearly linear dependence of loss on film thickness.

Tables (1)

Tables Icon

Table 1 Thicknesses of the Films Studied in this Paper

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ucav=TUinc1-R2,
γ=1-expLc1τs-1τ,
γscR4πnsσλ2+4πσλ2+2T2πns-1σλ2,
k=-λln1-γ4πd,

Metrics