Abstract

A surplus amount of oxygen is needed to produce titanium dioxide films by reactive electron-beam evaporation of Ti3O5. We investigated the ratio of the rates at which oxygen molecules and TiOx molecules impinge upon substrates at 25° and 250 °C to produce TiO2 films that show no optical absorption in the visible spectral region. On unheated substrates the ratio was 49, and at 250 °C it was 26, provided that the substrates had been exposed to air after being coated at the given substrate temperature. Higher ratios were required if the TiO2 film was covered with a SiO2 film, which impeded further oxidation. Furthermore, the postdeposition oxidation behavior of these films was studied.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Cronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev. 113, 1222–1226 (1959).
    [CrossRef]
  2. V. N. Bogomolov, D. N. Mirlin, “Optical absorption by polarons in rutile (TiO2) single crystals,” Phys. Status Solidi 27, 443–453 (1968).
    [CrossRef]
  3. H. K. Pulker, G. Paesold, E. Ritter, “Refractive indices of TiO2 films produced by reactive evaporation of various titanium-oxygen phases,” Appl. Opt. 15, 2986–2991 (1976).
    [CrossRef] [PubMed]
  4. H. W. Lehmann, K. Frick, “Optimizing deposition parameters of electron beam evaporated TiO2 films,” Appl. Opt. 27, 4920–4924 (1988).
    [CrossRef] [PubMed]
  5. Leybold-Heraeus catalog 19989, “Grundlagen der Vakuumtechnik, Berechnungen und Tabellen,” edition 01.86 (Leybold-Heraeus GmbH, Hanau, Germany, 1986), p. 77.
  6. H. Selhofer, E. Ritter, R. Linsbod, “Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials,” Appl. Opt. 41, 756–762 (2002).
    [CrossRef] [PubMed]
  7. E. Ritter, “Deposition of oxide films by reactive evaporation,” J. Vac. Sci. Technol. 3, 225–226 (1966).
    [CrossRef]
  8. K. Kerner, G. Mutschler, “Oxydation von Aluminium bei reaktivem Aufdampfen in Sauerstoff,” Bosch Tech. Ber. 3, 3–9 (1970).

2002

1988

1976

1970

K. Kerner, G. Mutschler, “Oxydation von Aluminium bei reaktivem Aufdampfen in Sauerstoff,” Bosch Tech. Ber. 3, 3–9 (1970).

1968

V. N. Bogomolov, D. N. Mirlin, “Optical absorption by polarons in rutile (TiO2) single crystals,” Phys. Status Solidi 27, 443–453 (1968).
[CrossRef]

1966

E. Ritter, “Deposition of oxide films by reactive evaporation,” J. Vac. Sci. Technol. 3, 225–226 (1966).
[CrossRef]

1959

D. C. Cronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev. 113, 1222–1226 (1959).
[CrossRef]

Bogomolov, V. N.

V. N. Bogomolov, D. N. Mirlin, “Optical absorption by polarons in rutile (TiO2) single crystals,” Phys. Status Solidi 27, 443–453 (1968).
[CrossRef]

Cronemeyer, D. C.

D. C. Cronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev. 113, 1222–1226 (1959).
[CrossRef]

Frick, K.

Kerner, K.

K. Kerner, G. Mutschler, “Oxydation von Aluminium bei reaktivem Aufdampfen in Sauerstoff,” Bosch Tech. Ber. 3, 3–9 (1970).

Lehmann, H. W.

Linsbod, R.

Mirlin, D. N.

V. N. Bogomolov, D. N. Mirlin, “Optical absorption by polarons in rutile (TiO2) single crystals,” Phys. Status Solidi 27, 443–453 (1968).
[CrossRef]

Mutschler, G.

K. Kerner, G. Mutschler, “Oxydation von Aluminium bei reaktivem Aufdampfen in Sauerstoff,” Bosch Tech. Ber. 3, 3–9 (1970).

Paesold, G.

Pulker, H. K.

Ritter, E.

Selhofer, H.

Appl. Opt.

Bosch Tech. Ber.

K. Kerner, G. Mutschler, “Oxydation von Aluminium bei reaktivem Aufdampfen in Sauerstoff,” Bosch Tech. Ber. 3, 3–9 (1970).

J. Vac. Sci. Technol.

E. Ritter, “Deposition of oxide films by reactive evaporation,” J. Vac. Sci. Technol. 3, 225–226 (1966).
[CrossRef]

Phys. Rev.

D. C. Cronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev. 113, 1222–1226 (1959).
[CrossRef]

Phys. Status Solidi

V. N. Bogomolov, D. N. Mirlin, “Optical absorption by polarons in rutile (TiO2) single crystals,” Phys. Status Solidi 27, 443–453 (1968).
[CrossRef]

Other

Leybold-Heraeus catalog 19989, “Grundlagen der Vakuumtechnik, Berechnungen und Tabellen,” edition 01.86 (Leybold-Heraeus GmbH, Hanau, Germany, 1986), p. 77.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Decay of absorption (at 850 nm) versus time in TiO2 films deposited upon unheated substrates.

Fig. 2
Fig. 2

Dependence of absorption (in the range 680–900 nm) of uncovered TiO2 films on evaporation rate and substrate temperature, measured ∼30 min after deposition.

Fig. 3
Fig. 3

Dependence of absorption (in the range 680–900 nm) of SiO2-covered TiO2 films on evaporation rate and substrate temperature, measured ∼30 min after deposition.

Fig. 4
Fig. 4

Dependence of absorption (in the range 680–900 nm) of uncovered TiO2 films on evaporation rate and substrate temperature, measured ∼3 weeks after deposition.

Fig. 5
Fig. 5

Dependence of absorption (in the range 680–900 nm) of SiO2-covered TiO2 films on evaporation rate and substrate temperature, measured ∼3 weeks after deposition.

Tables (2)

Tables Icon

Table 1 Deposition Parameters

Tables Icon

Table 2 O2/TiOx Impingement-Rate Ratios

Metrics