Abstract

We deposited graded-index SiO2 films using glancing angle deposition to produce high-transmission antireflection coatings on glass. Because of the accurate control over the thin-film microstructure provided by this technique, we were able to create graded densities with a Gaussian profile resulting in transmission values greater than 99.9% for a single-layer interface with bandwidths up to 460 nm. The graded-index layer also provides low reflectance at nonnormal angles of incidence with transmission values degrading little for incidence angles up to 30°.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Fraunhofer, Gesammelte Schriften (F. Hommel, Munich, 1887).
  2. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).
  3. N. Ford, P. W. McMillan, “Integral antireflection films for glasses: a review,” Glass Technol. 26, 104–107 (1985).
  4. L. Schirone, G. Sotgiu, F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297, 296–298 (1997).
    [CrossRef]
  5. P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, M. Peneva, “High efficiency solar cell using a thin porous silicon layer,” Thin Solid Films 297, 299–303 (1997).
    [CrossRef]
  6. W. H. Lowdermilk, D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36, 891–893 (1980).
    [CrossRef]
  7. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
    [CrossRef]
  8. M. Thonissen, M. G. Berger, M. Kruger, W. Theiss, S. Hilbrich, R. Arens-Fisher, “Improved interference filter structures made of porous silicon,” Mater. Res. Soc. Symp. Proc. 452, 643–648 (1997).
    [CrossRef]
  9. R. Clausius, Die mechanische Behandlung der Electricitat (Vieweg, Braunschweig, Germany, 1879).
  10. O. F. Mossotti, Memorie di Matematica e di Fisica della Societa Italiana delle Scienze Residente in Modena, 24(2), 49–74 (1850).
  11. H. A. Lorentz, The Theory of Electrons (B. G. Teubner, Leipzig, 1909; reprint, Dover, New York, 1952).
  12. See L. Lorenz, Wiedemannsche Annalen 11, 70 (1880).
  13. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385–420 (1904).
    [CrossRef]
  14. J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions, II,” Philos. Trans. R. Soc. London 205, 237–288 (1906).
    [CrossRef]
  15. R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” in Physics of Thin Films, G. Hass, M. Francombe, R. Hoffman, eds. (Academic, New York, 1975), vol. 8, pp. 51–98.
  16. C. G. Granqvist, O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
    [CrossRef]
  17. R. Landauer, “Electrical conductivity in inhomogeneous media,” in Proceedings of the First Congress on the Electrical Transport and Optical Properties of Inhomogeneous Media, J. C. Garland, D. B. Tanner, eds. (American Institute of Physics, New York, 1978), vol. 40, pp. 2–43.
  18. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549–553 (1991).
    [CrossRef]
  19. J. M. Nieuwenhuizen, H. B. Haanstra, “Microfractography of thin films,” Philips Tech. Rev. 27, 87–91 (1966).
  20. K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
    [CrossRef]
  21. K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanisms and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
    [CrossRef]
  22. L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
    [CrossRef]
  23. R. N. Tait, T. Smy, M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
    [CrossRef]
  24. K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, J. N. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
    [CrossRef]
  25. K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
    [CrossRef]
  26. I. Hodgkinson, Q. Wu, B. Knight, A. Lakhtakia, K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
    [CrossRef]
  27. H. A. MacLeod, Thin Film Optical Filters (American Elsevier, New York, 1969).
  28. S. J. Wilson, M. C. Hutley, “The optical properties of ‘moth-eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
    [CrossRef]

2000 (1)

1998 (1)

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

1997 (6)

M. Thonissen, M. G. Berger, M. Kruger, W. Theiss, S. Hilbrich, R. Arens-Fisher, “Improved interference filter structures made of porous silicon,” Mater. Res. Soc. Symp. Proc. 452, 643–648 (1997).
[CrossRef]

L. Schirone, G. Sotgiu, F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297, 296–298 (1997).
[CrossRef]

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, M. Peneva, “High efficiency solar cell using a thin porous silicon layer,” Thin Solid Films 297, 299–303 (1997).
[CrossRef]

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanisms and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[CrossRef]

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, J. N. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

1996 (1)

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

1995 (1)

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

1993 (1)

R. N. Tait, T. Smy, M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

1991 (1)

1985 (1)

N. Ford, P. W. McMillan, “Integral antireflection films for glasses: a review,” Glass Technol. 26, 104–107 (1985).

1982 (1)

S. J. Wilson, M. C. Hutley, “The optical properties of ‘moth-eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

1980 (1)

W. H. Lowdermilk, D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36, 891–893 (1980).
[CrossRef]

1977 (1)

C. G. Granqvist, O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

1967 (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

1966 (1)

J. M. Nieuwenhuizen, H. B. Haanstra, “Microfractography of thin films,” Philips Tech. Rev. 27, 87–91 (1966).

1906 (1)

J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions, II,” Philos. Trans. R. Soc. London 205, 237–288 (1906).
[CrossRef]

1904 (1)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385–420 (1904).
[CrossRef]

1880 (1)

See L. Lorenz, Wiedemannsche Annalen 11, 70 (1880).

1850 (1)

O. F. Mossotti, Memorie di Matematica e di Fisica della Societa Italiana delle Scienze Residente in Modena, 24(2), 49–74 (1850).

Abelmann, L.

L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[CrossRef]

Arens-Fisher, R.

M. Thonissen, M. G. Berger, M. Kruger, W. Theiss, S. Hilbrich, R. Arens-Fisher, “Improved interference filter structures made of porous silicon,” Mater. Res. Soc. Symp. Proc. 452, 643–648 (1997).
[CrossRef]

Berger, M. G.

M. Thonissen, M. G. Berger, M. Kruger, W. Theiss, S. Hilbrich, R. Arens-Fisher, “Improved interference filter structures made of porous silicon,” Mater. Res. Soc. Symp. Proc. 452, 643–648 (1997).
[CrossRef]

Bernhard, C. G.

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Blasi, B.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

Brett, M. J.

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, J. N. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanisms and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

R. N. Tait, T. Smy, M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

Califano, F. P.

L. Schirone, G. Sotgiu, F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297, 296–298 (1997).
[CrossRef]

Clausius, R.

R. Clausius, Die mechanische Behandlung der Electricitat (Vieweg, Braunschweig, Germany, 1879).

Delibasheva, M.

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, M. Peneva, “High efficiency solar cell using a thin porous silicon layer,” Thin Solid Films 297, 299–303 (1997).
[CrossRef]

Dew, S. K.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Doll, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

Dreibholz, J.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

Ford, N.

N. Ford, P. W. McMillan, “Integral antireflection films for glasses: a review,” Glass Technol. 26, 104–107 (1985).

Fraunhofer, J.

J. Fraunhofer, Gesammelte Schriften (F. Hommel, Munich, 1887).

Friedrich, L. J.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Glaubitt, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

Gombert, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

Goranova, E.

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, M. Peneva, “High efficiency solar cell using a thin porous silicon layer,” Thin Solid Films 297, 299–303 (1997).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist, O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

Haanstra, H. B.

J. M. Nieuwenhuizen, H. B. Haanstra, “Microfractography of thin films,” Philips Tech. Rev. 27, 87–91 (1966).

Heinzel, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

Hilbrich, S.

M. Thonissen, M. G. Berger, M. Kruger, W. Theiss, S. Hilbrich, R. Arens-Fisher, “Improved interference filter structures made of porous silicon,” Mater. Res. Soc. Symp. Proc. 452, 643–648 (1997).
[CrossRef]

Hnatiw, A. J. P.

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, J. N. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

Hodgkinson, I.

Horbelt, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

Hunderi, O.

C. G. Granqvist, O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

Hutley, M. C.

S. J. Wilson, M. C. Hutley, “The optical properties of ‘moth-eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

Jacobsson, R.

R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” in Physics of Thin Films, G. Hass, M. Francombe, R. Hoffman, eds. (Academic, New York, 1975), vol. 8, pp. 51–98.

Kamenova, M.

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, M. Peneva, “High efficiency solar cell using a thin porous silicon layer,” Thin Solid Films 297, 299–303 (1997).
[CrossRef]

Knight, B.

Kruger, M.

M. Thonissen, M. G. Berger, M. Kruger, W. Theiss, S. Hilbrich, R. Arens-Fisher, “Improved interference filter structures made of porous silicon,” Mater. Res. Soc. Symp. Proc. 452, 643–648 (1997).
[CrossRef]

Lakhtakia, A.

Landauer, R.

R. Landauer, “Electrical conductivity in inhomogeneous media,” in Proceedings of the First Congress on the Electrical Transport and Optical Properties of Inhomogeneous Media, J. C. Garland, D. B. Tanner, eds. (American Institute of Physics, New York, 1978), vol. 40, pp. 2–43.

Lodder, C.

L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[CrossRef]

Lorentz, H. A.

H. A. Lorentz, The Theory of Electrons (B. G. Teubner, Leipzig, 1909; reprint, Dover, New York, 1952).

Lorenz, L.

See L. Lorenz, Wiedemannsche Annalen 11, 70 (1880).

Lowdermilk, W. H.

W. H. Lowdermilk, D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36, 891–893 (1980).
[CrossRef]

Luther, J.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

MacDonald, R. I.

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, J. N. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

MacLeod, H. A.

H. A. MacLeod, Thin Film Optical Filters (American Elsevier, New York, 1969).

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions, II,” Philos. Trans. R. Soc. London 205, 237–288 (1906).
[CrossRef]

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385–420 (1904).
[CrossRef]

McMillan, P. W.

N. Ford, P. W. McMillan, “Integral antireflection films for glasses: a review,” Glass Technol. 26, 104–107 (1985).

McMullin, J. N.

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, J. N. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

Milam, D.

W. H. Lowdermilk, D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36, 891–893 (1980).
[CrossRef]

Mossotti, O. F.

O. F. Mossotti, Memorie di Matematica e di Fisica della Societa Italiana delle Scienze Residente in Modena, 24(2), 49–74 (1850).

Nieuwenhuizen, J. M.

J. M. Nieuwenhuizen, H. B. Haanstra, “Microfractography of thin films,” Philips Tech. Rev. 27, 87–91 (1966).

Peneva, M.

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, M. Peneva, “High efficiency solar cell using a thin porous silicon layer,” Thin Solid Films 297, 299–303 (1997).
[CrossRef]

Robbie, K.

I. Hodgkinson, Q. Wu, B. Knight, A. Lakhtakia, K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000).
[CrossRef]

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanisms and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, J. N. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Rose, K.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

Schirone, L.

L. Schirone, G. Sotgiu, F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297, 296–298 (1997).
[CrossRef]

Smy, T.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

R. N. Tait, T. Smy, M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

Sotgiu, G.

L. Schirone, G. Sotgiu, F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297, 296–298 (1997).
[CrossRef]

Southwell, W. H.

Sporn, D.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

Tait, R. N.

R. N. Tait, T. Smy, M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

Theiss, W.

M. Thonissen, M. G. Berger, M. Kruger, W. Theiss, S. Hilbrich, R. Arens-Fisher, “Improved interference filter structures made of porous silicon,” Mater. Res. Soc. Symp. Proc. 452, 643–648 (1997).
[CrossRef]

Thonissen, M.

M. Thonissen, M. G. Berger, M. Kruger, W. Theiss, S. Hilbrich, R. Arens-Fisher, “Improved interference filter structures made of porous silicon,” Mater. Res. Soc. Symp. Proc. 452, 643–648 (1997).
[CrossRef]

Tyutyundzhiev, N.

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, M. Peneva, “High efficiency solar cell using a thin porous silicon layer,” Thin Solid Films 297, 299–303 (1997).
[CrossRef]

Vitanov, P.

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, M. Peneva, “High efficiency solar cell using a thin porous silicon layer,” Thin Solid Films 297, 299–303 (1997).
[CrossRef]

Wilson, S. J.

S. J. Wilson, M. C. Hutley, “The optical properties of ‘moth-eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

Wittwer, V.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

Wu, Q.

Zanke, C.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. H. Lowdermilk, D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36, 891–893 (1980).
[CrossRef]

Electron. Lett. (1)

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, J. N. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

Endeavour (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Glass Technol. (1)

N. Ford, P. W. McMillan, “Integral antireflection films for glasses: a review,” Glass Technol. 26, 104–107 (1985).

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. A (2)

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanisms and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

M. Thonissen, M. G. Berger, M. Kruger, W. Theiss, S. Hilbrich, R. Arens-Fisher, “Improved interference filter structures made of porous silicon,” Mater. Res. Soc. Symp. Proc. 452, 643–648 (1997).
[CrossRef]

Memorie di Matematica e di Fisica della Societa Italiana delle Scienze Residente in Modena (1)

O. F. Mossotti, Memorie di Matematica e di Fisica della Societa Italiana delle Scienze Residente in Modena, 24(2), 49–74 (1850).

Nature (London) (1)

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculptured thin films,” Nature (London) 384, 616 (1996).
[CrossRef]

Opt. Acta (1)

S. J. Wilson, M. C. Hutley, “The optical properties of ‘moth-eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

Philips Tech. Rev. (1)

J. M. Nieuwenhuizen, H. B. Haanstra, “Microfractography of thin films,” Philips Tech. Rev. 27, 87–91 (1966).

Philos. Trans. R. Soc. London (2)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385–420 (1904).
[CrossRef]

J. C. Maxwell Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions, II,” Philos. Trans. R. Soc. London 205, 237–288 (1906).
[CrossRef]

Phys. Rev. B (1)

C. G. Granqvist, O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

Sol. Energy (1)

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, C. Zanke, B. Blasi, A. Heinzel, W. Horbelt, D. Sporn, W. Doll, V. Wittwer, J. Luther, “Glazing with very high solar transmittance,” Sol. Energy 62, 177–188 (1998).
[CrossRef]

Thin Solid Films (4)

L. Schirone, G. Sotgiu, F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films 297, 296–298 (1997).
[CrossRef]

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, M. Peneva, “High efficiency solar cell using a thin porous silicon layer,” Thin Solid Films 297, 299–303 (1997).
[CrossRef]

L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[CrossRef]

R. N. Tait, T. Smy, M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

Wiedemannsche Annalen (1)

See L. Lorenz, Wiedemannsche Annalen 11, 70 (1880).

Other (6)

J. Fraunhofer, Gesammelte Schriften (F. Hommel, Munich, 1887).

H. A. Lorentz, The Theory of Electrons (B. G. Teubner, Leipzig, 1909; reprint, Dover, New York, 1952).

R. Landauer, “Electrical conductivity in inhomogeneous media,” in Proceedings of the First Congress on the Electrical Transport and Optical Properties of Inhomogeneous Media, J. C. Garland, D. B. Tanner, eds. (American Institute of Physics, New York, 1978), vol. 40, pp. 2–43.

R. Jacobsson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” in Physics of Thin Films, G. Hass, M. Francombe, R. Hoffman, eds. (Academic, New York, 1975), vol. 8, pp. 51–98.

R. Clausius, Die mechanische Behandlung der Electricitat (Vieweg, Braunschweig, Germany, 1879).

H. A. MacLeod, Thin Film Optical Filters (American Elsevier, New York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Refractive-index profiles for SiO2 GRIN GLAD AR coatings on 7059 glass. The solid curves show the Gaussian profiles for the fabricated films and the dashed curve is the profile given by the ideal fifth-order polynomial model.18

Fig. 2
Fig. 2

Schematic of how the GLAD process is used to fabricate graded-index films. By increasing the angle of incidence the deposited film decreases in density, whereas rotating the substrate throughout the deposition produces vertical projections.

Fig. 3
Fig. 3

Scanning electron micrograph of a sample GRIN GLAD film. Note the higher density of the film closer to the substrate shown by the change in contrast of that part of the image.

Fig. 4
Fig. 4

Surface profile of a GRIN GLAD film produced by tapping-mode atomic force microscopy. The two insets show top and cross-sectional views. The average spacing of the columns at the top is 143.1 nm and their average diameter is 30.9 nm.

Fig. 5
Fig. 5

Transmission spectrum for a GRIN GLAD film and a comparison with several models. Note that the inclusion of the effects of scattering more accurately represents the actual measured results. For comparison, the calculated transmission spectrum for a single-layer MgF2 interference coating is also shown.

Fig. 6
Fig. 6

Bandwidth results as a function of the index profile variable m. Because of the high transmission values obtained, we chose to define the bandwidth as wavelengths with a transmission greater than 99.7%.

Fig. 7
Fig. 7

Wavelength of peak transmission as a function of the index profile variable m for films with constant thickness z 0 = 295 nm. Also included is the calculation of average index for the different profiles showing a correlation between the optical thickness and λpeak.

Fig. 8
Fig. 8

Wavelength of peak transmission as a function of film thickness z 0 for films with m = 2.5. The linear relationship is predicted from theory and agrees with accepted values.28

Fig. 9
Fig. 9

Transmission spectra of both TE and TM polarizations for angles of incidence from 0° to 30°. The dashed curves represent the results of the model and the solid curves represent the experimental results. Note the high-transmission characteristic of graded-index coatings for nonnormal angles of incidence, a result not possible from most interference AR coatings.

Tables (1)

Tables Icon

Table 1 Characteristic Values of an SiO2 GRIN GLAD Film Obtained from a Tapping-Mode AFM

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

αz=cos-12ρrz-1-1,
ρrz=ρzρ0=exp-mz0-zz02,
RfilmRCTM=-0.00014α2+0.0033α+0.98.
nave=1z00z0 nzdz,

Metrics