Abstract

The optical properties of thin films of ytterbium in the 53.6–183.6-nm spectral range are described. Yb films were deposited in ultrahigh-vacuum conditions, and their transmittance and reflectance were measured in situ. Transmittance measurements showed that Yb has a certain window of lower absorption at approximately 54–100 nm, which makes Yb an interesting material for filters in this difficult spectral range. The optical constants were obtained from transmittance measurements and from multiangle reflectance measurements. These are what we believe are the first reported optical measurements of fresh Yb films at wavelengths shorter than 107.8 nm. Aging studies were performed both under vacuum and in a desiccator and showed that the optical properties of Yb are strongly modified on aging.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Endriz, W. E. Spicer, “Reflectance studies of Ba, Sr, Eu, and Yb,” Phys. Rev. B 2, 1466–1492 (1970).
    [CrossRef]
  2. S. A. Gribovskii, T. M. Zimkina, “Absorption coefficients of rare-earth elements of the lanthanum group in the ultrasoft x-ray region,” Opt. Spectrosc. (USSR) 35, 104–105 (1973).
  3. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
    [CrossRef]
  4. http://www-cxro.lbl.gov/optical_constants/ .
  5. J. A. Aznárez, J. I. Larruquert, J. A. Méndez, “Far-ultraviolet absolute reflectometer for optical constant determination of ultrahigh vacuum prepared thin films,” Rev. Sci. Instrum. 67, 497–502 (1996).
    [CrossRef]
  6. J. I. Larruquert, J. A. Aznárez, A. Méndez, “FUV reflectometer for in situ characterization of thin films deposited under UHV,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. Siegmund, B. E. Woodgate, eds., Proc. SPIE4139, 92–101 (2000).
  7. S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films (Oxford U. Press, London, 1948).
  8. P. J. Goodhew, Specimen Preparation in Materials Science, Vol. I of Practical Methods in Electron Microscopy, A. M. Glauert, ed. (North-Holland, Amsterdam, 1972), Part 1, pp. 164–167.
  9. W. R. Hunter, D. W. Angel, R. Tousey, “Thin films and their uses for the extreme ultraviolet,” Appl. Opt. 4, 891–898 (1965).
    [CrossRef]
  10. K. Codling, R. P. Madden, W. R. Hunter, D. W. Angel, “Transmittance of thin films in the far ultraviolet,” J. Opt. Soc. Am. 56, 189–192 (1966).
    [CrossRef]
  11. E. A. Bakulin, L. A. Balabanova, E. V. Stepin, V. V. Shcherbinina, “Characteristic energy losses of electrons in the rare-earth metals,” Sov. Phys. Solid State 13, 189–191 (1971).
  12. C. Colliex, M. Gasgnier, P. Trebbia, “Analysis of the electron excitation spectra in heavy rare earth metals, hydrides and oxides,” J. Phys. 37, 397–406 (1976).
    [CrossRef]
  13. See, for instance, O. Singh, A. E. Curzon, “The effect of oxygen and hydrogen contamination on the electrical resistivity of rare earth metal films,” Thin Solid Films 44, 233–240 (1977).
    [CrossRef]

1996 (1)

J. A. Aznárez, J. I. Larruquert, J. A. Méndez, “Far-ultraviolet absolute reflectometer for optical constant determination of ultrahigh vacuum prepared thin films,” Rev. Sci. Instrum. 67, 497–502 (1996).
[CrossRef]

1993 (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

1977 (1)

See, for instance, O. Singh, A. E. Curzon, “The effect of oxygen and hydrogen contamination on the electrical resistivity of rare earth metal films,” Thin Solid Films 44, 233–240 (1977).
[CrossRef]

1976 (1)

C. Colliex, M. Gasgnier, P. Trebbia, “Analysis of the electron excitation spectra in heavy rare earth metals, hydrides and oxides,” J. Phys. 37, 397–406 (1976).
[CrossRef]

1973 (1)

S. A. Gribovskii, T. M. Zimkina, “Absorption coefficients of rare-earth elements of the lanthanum group in the ultrasoft x-ray region,” Opt. Spectrosc. (USSR) 35, 104–105 (1973).

1971 (1)

E. A. Bakulin, L. A. Balabanova, E. V. Stepin, V. V. Shcherbinina, “Characteristic energy losses of electrons in the rare-earth metals,” Sov. Phys. Solid State 13, 189–191 (1971).

1970 (1)

J. G. Endriz, W. E. Spicer, “Reflectance studies of Ba, Sr, Eu, and Yb,” Phys. Rev. B 2, 1466–1492 (1970).
[CrossRef]

1966 (1)

1965 (1)

Angel, D. W.

Aznárez, J. A.

J. A. Aznárez, J. I. Larruquert, J. A. Méndez, “Far-ultraviolet absolute reflectometer for optical constant determination of ultrahigh vacuum prepared thin films,” Rev. Sci. Instrum. 67, 497–502 (1996).
[CrossRef]

J. I. Larruquert, J. A. Aznárez, A. Méndez, “FUV reflectometer for in situ characterization of thin films deposited under UHV,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. Siegmund, B. E. Woodgate, eds., Proc. SPIE4139, 92–101 (2000).

Bakulin, E. A.

E. A. Bakulin, L. A. Balabanova, E. V. Stepin, V. V. Shcherbinina, “Characteristic energy losses of electrons in the rare-earth metals,” Sov. Phys. Solid State 13, 189–191 (1971).

Balabanova, L. A.

E. A. Bakulin, L. A. Balabanova, E. V. Stepin, V. V. Shcherbinina, “Characteristic energy losses of electrons in the rare-earth metals,” Sov. Phys. Solid State 13, 189–191 (1971).

Codling, K.

Colliex, C.

C. Colliex, M. Gasgnier, P. Trebbia, “Analysis of the electron excitation spectra in heavy rare earth metals, hydrides and oxides,” J. Phys. 37, 397–406 (1976).
[CrossRef]

Curzon, A. E.

See, for instance, O. Singh, A. E. Curzon, “The effect of oxygen and hydrogen contamination on the electrical resistivity of rare earth metal films,” Thin Solid Films 44, 233–240 (1977).
[CrossRef]

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Endriz, J. G.

J. G. Endriz, W. E. Spicer, “Reflectance studies of Ba, Sr, Eu, and Yb,” Phys. Rev. B 2, 1466–1492 (1970).
[CrossRef]

Gasgnier, M.

C. Colliex, M. Gasgnier, P. Trebbia, “Analysis of the electron excitation spectra in heavy rare earth metals, hydrides and oxides,” J. Phys. 37, 397–406 (1976).
[CrossRef]

Goodhew, P. J.

P. J. Goodhew, Specimen Preparation in Materials Science, Vol. I of Practical Methods in Electron Microscopy, A. M. Glauert, ed. (North-Holland, Amsterdam, 1972), Part 1, pp. 164–167.

Gribovskii, S. A.

S. A. Gribovskii, T. M. Zimkina, “Absorption coefficients of rare-earth elements of the lanthanum group in the ultrasoft x-ray region,” Opt. Spectrosc. (USSR) 35, 104–105 (1973).

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Hunter, W. R.

Larruquert, J. I.

J. A. Aznárez, J. I. Larruquert, J. A. Méndez, “Far-ultraviolet absolute reflectometer for optical constant determination of ultrahigh vacuum prepared thin films,” Rev. Sci. Instrum. 67, 497–502 (1996).
[CrossRef]

J. I. Larruquert, J. A. Aznárez, A. Méndez, “FUV reflectometer for in situ characterization of thin films deposited under UHV,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. Siegmund, B. E. Woodgate, eds., Proc. SPIE4139, 92–101 (2000).

Madden, R. P.

Méndez, A.

J. I. Larruquert, J. A. Aznárez, A. Méndez, “FUV reflectometer for in situ characterization of thin films deposited under UHV,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. Siegmund, B. E. Woodgate, eds., Proc. SPIE4139, 92–101 (2000).

Méndez, J. A.

J. A. Aznárez, J. I. Larruquert, J. A. Méndez, “Far-ultraviolet absolute reflectometer for optical constant determination of ultrahigh vacuum prepared thin films,” Rev. Sci. Instrum. 67, 497–502 (1996).
[CrossRef]

Shcherbinina, V. V.

E. A. Bakulin, L. A. Balabanova, E. V. Stepin, V. V. Shcherbinina, “Characteristic energy losses of electrons in the rare-earth metals,” Sov. Phys. Solid State 13, 189–191 (1971).

Singh, O.

See, for instance, O. Singh, A. E. Curzon, “The effect of oxygen and hydrogen contamination on the electrical resistivity of rare earth metal films,” Thin Solid Films 44, 233–240 (1977).
[CrossRef]

Spicer, W. E.

J. G. Endriz, W. E. Spicer, “Reflectance studies of Ba, Sr, Eu, and Yb,” Phys. Rev. B 2, 1466–1492 (1970).
[CrossRef]

Stepin, E. V.

E. A. Bakulin, L. A. Balabanova, E. V. Stepin, V. V. Shcherbinina, “Characteristic energy losses of electrons in the rare-earth metals,” Sov. Phys. Solid State 13, 189–191 (1971).

Tolansky, S.

S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films (Oxford U. Press, London, 1948).

Tousey, R.

Trebbia, P.

C. Colliex, M. Gasgnier, P. Trebbia, “Analysis of the electron excitation spectra in heavy rare earth metals, hydrides and oxides,” J. Phys. 37, 397–406 (1976).
[CrossRef]

Zimkina, T. M.

S. A. Gribovskii, T. M. Zimkina, “Absorption coefficients of rare-earth elements of the lanthanum group in the ultrasoft x-ray region,” Opt. Spectrosc. (USSR) 35, 104–105 (1973).

Appl. Opt. (1)

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. (1)

C. Colliex, M. Gasgnier, P. Trebbia, “Analysis of the electron excitation spectra in heavy rare earth metals, hydrides and oxides,” J. Phys. 37, 397–406 (1976).
[CrossRef]

Opt. Spectrosc. (USSR) (1)

S. A. Gribovskii, T. M. Zimkina, “Absorption coefficients of rare-earth elements of the lanthanum group in the ultrasoft x-ray region,” Opt. Spectrosc. (USSR) 35, 104–105 (1973).

Phys. Rev. B (1)

J. G. Endriz, W. E. Spicer, “Reflectance studies of Ba, Sr, Eu, and Yb,” Phys. Rev. B 2, 1466–1492 (1970).
[CrossRef]

Rev. Sci. Instrum. (1)

J. A. Aznárez, J. I. Larruquert, J. A. Méndez, “Far-ultraviolet absolute reflectometer for optical constant determination of ultrahigh vacuum prepared thin films,” Rev. Sci. Instrum. 67, 497–502 (1996).
[CrossRef]

Sov. Phys. Solid State (1)

E. A. Bakulin, L. A. Balabanova, E. V. Stepin, V. V. Shcherbinina, “Characteristic energy losses of electrons in the rare-earth metals,” Sov. Phys. Solid State 13, 189–191 (1971).

Thin Solid Films (1)

See, for instance, O. Singh, A. E. Curzon, “The effect of oxygen and hydrogen contamination on the electrical resistivity of rare earth metal films,” Thin Solid Films 44, 233–240 (1977).
[CrossRef]

Other (4)

J. I. Larruquert, J. A. Aznárez, A. Méndez, “FUV reflectometer for in situ characterization of thin films deposited under UHV,” in Instrumentation for UV/EUV Astronomy and Solar Missions, S. Fineschi, C. M. Korendyke, O. H. Siegmund, B. E. Woodgate, eds., Proc. SPIE4139, 92–101 (2000).

S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films (Oxford U. Press, London, 1948).

P. J. Goodhew, Specimen Preparation in Materials Science, Vol. I of Practical Methods in Electron Microscopy, A. M. Glauert, ed. (North-Holland, Amsterdam, 1972), Part 1, pp. 164–167.

http://www-cxro.lbl.gov/optical_constants/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Transmittance of Yb films as a function of wavelength for four films of different thicknesses. The transmittance is normalized to the transmittance of the substrate before the substrate is coated. (b) Transmittance of the substrates before they are coated with Yb films.

Fig. 2
Fig. 2

Transmittance of Yb films of two different thicknesses, normalized to the transmittance of uncoated substrates, compared with that of In (Ref. 9) and Sn (Ref. 10) films. The transmittance of Yb calculated with Henke data3 through CXRO’s web page4 enables the current measurements to be extrapolated toward shorter wavelengths.

Fig. 3
Fig. 3

Optical constants of Yb as a function of wavelength. The data of Ref. 1 are also shown for comparison.

Fig. 4
Fig. 4

Reflectance of Yb films versus wavelength at seven angles of incidence measured from the normal in the horizontal plane of incidence of the reflectometer.

Fig. 5
Fig. 5

Loss function of Yb as a function of wavelength.

Fig. 6
Fig. 6

Degradation of Yb film transmittance on aging in UHV, in air, and in a desiccator. One film was deposited upon a LiF slide and the other one upon a C film supported over a grid.

Fig. 7
Fig. 7

Degradation of the near-normal reflectance of an Yb film on aging in UHV.

Fig. 8
Fig. 8

Change in near-grazing-incidence reflectance of an Yb film on aging in a desiccator.

Tables (2)

Tables Icon

Table 1 Optical Constants of Yb Films

Tables Icon

Table 2 Optical Constants of Glass Substrates

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

TfsTs=exp-4πkxλ,
rs,p=r01s,p+r12s,p exp2iβ1+r01s,pr12s,p exp2iβ,
β=k0xn12-n02sin2 θ1/2,
p=Ip-IsIp+Is,
R=1+p2 Rp+1-p2 Rs,
s2=i=1,,mRθiexp-Rθi, n, k, p2,

Metrics