Abstract

We study the power-limiting properties of photoanisotropic azobenzene films with low-power lasers. The trans-cis photoisomerization and molecular reorientation of azobenzene molecules induced by polarized laser beams result in intensity-dependent anisotropic effects. Consequently, the transmittance of the input beam that passes through the film between two crossed polarizers becomes enhanced at low intensities and clamped at high intensities. The limiting threshold is adjustable by changing the intensity of excitation beam.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, E. W. V. Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt. 36, 4110–4122 (1997).
    [CrossRef] [PubMed]
  2. R. Lepkowicz, A. Kobyakov, D. J. Hagan, E. W. V. Stryland, “Picosecond optical limiting in reverse saturable absorbers: a theoretical and experimental study,” J. Opt. Soc. Am. B 19, 94–101 (2002).
    [CrossRef]
  3. N. V. Kamanina, A. I. Plekhanov, “Mechanisms of optical limiting in fullerene-doped π-conjugated organic structure demonstrated with polyimide and COANP molecules,” Opt. Spectrosc. 93, 408–415 (2002).
    [CrossRef]
  4. M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
    [CrossRef]
  5. G. Zhou, X. Wang, D. Wang, Z. Shao, M. Jiang, “Upconversion fluorescence and optical power limiting effects based on the two- and three-photon absorption process of a new organic dye BPAS,” Appl. Opt. 41, 1120–1123 (2002).
    [CrossRef] [PubMed]
  6. I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, A. G. Kalintsev, A. V. Kris’ko, N. G. Mironova, M. S. Yur’ev, “Role of light-induced scattering in the optical limitation of laser radiation on the basis of fullerene-containing media,” Opt. Spectrosc. 90, 292–301 (2001).
    [CrossRef]
  7. G. S. Maciel, N. Rakov, C. B. Araújo, “Enhanced optical limiting performance of a nonlinear absorber in a solution containing scattering nanoparticles,” Opt. Lett. 27, 740–742 (2002).
    [CrossRef]
  8. W. Ji, A. K. Kukaswadia, Z. C. Feng, S. H. Tang, “Self-defocusing of nanosecond laser pulses in ZnTe,” J. Appl. Phys. 75, 3340–3343 (1994).
    [CrossRef]
  9. J. J. Liu, P. P. Banerjee, Q. W. Song, “Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3,” J. Opt. Soc. Am. B 11, 1688–1693 (1994).
    [CrossRef]
  10. D. I. Kovsh, S. Yang, D. J. Hagan, E. W. V. Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38, 5168–5180 (1999).
    [CrossRef]
  11. J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
    [CrossRef]
  12. O. V. Andreeva, I. M. Belousova, V. G. Bespalov, Y. N. Efimov, V. N. Sizov, A. S. Cherkasov, E. Yu Yutanova, A. L. Pyaĩt, “Recording dynamic holograms in toluene solutions of fullerene C60,” J. Opt. Technol. 69, 170–174 (2002).
    [CrossRef]
  13. M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
    [CrossRef] [PubMed]
  14. P. Tran, “Optical limiting and switching of short pulses by use of a nonlinear photonic bandgap structure with a defect,” J. Opt. Soc. Am. B 14, 2589–2595 (1997).
    [CrossRef]
  15. R. Frey, C. Flytzanis, “Optical limitation in resonant Faraday media,” Opt. Lett. 25, 838–840 (2000).
    [CrossRef]
  16. G. E. Dovgalenko, M. Klotz, G. J. Salamo, G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287 (1996).
    [CrossRef]
  17. P. Wu, L. Wang, J. Xu, B. Zou, “Transient biphotonic holographic grating in photoisomerization azo materials,” Phys. Rev. B 57, 3874–3880 (1998).
    [CrossRef]
  18. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
    [CrossRef]
  19. T. Ikeda, O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873–1875 (1995).
    [CrossRef] [PubMed]
  20. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Transient optical modulation with a disperse-red-1-doped polymer film,” Appl. Opt. 39, 814–817 (2000).
    [CrossRef]
  21. S. B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).
  22. R. A. Hill, S. Dreher, A. Knoesen, D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
    [CrossRef]
  23. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
    [CrossRef]
  24. For a recent review see C. Dekker, “Carbon nanotubes as molecular quantum wires,” Phys. Today 52, 22–28 (1999).
    [CrossRef]
  25. R. Philip, G. Ravindra Kumar, N. Sandhyarani, T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160–13166 (2000).
    [CrossRef]
  26. D. H. Choi, “Effect of temperature on photoinduced reorientation of azobenzene chromophore in the side chain copolymers,” Bull. Korean Chem. Soc. 20, 1010–1016 (1999).
  27. S. P. Palto, V. A. Khavrichev, S. G. Yudin, L. M. Blinov, A. A. Udal’yev, “On a model of photo-induced optical anisotropy in Langmuir-Blodgett films: low temperature studies,” Mol. Mater. 2, 63–68 (1992).
  28. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78, 1189–1191 (2001).
    [CrossRef]
  29. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
    [CrossRef]

2002

N. V. Kamanina, A. I. Plekhanov, “Mechanisms of optical limiting in fullerene-doped π-conjugated organic structure demonstrated with polyimide and COANP molecules,” Opt. Spectrosc. 93, 408–415 (2002).
[CrossRef]

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

R. Lepkowicz, A. Kobyakov, D. J. Hagan, E. W. V. Stryland, “Picosecond optical limiting in reverse saturable absorbers: a theoretical and experimental study,” J. Opt. Soc. Am. B 19, 94–101 (2002).
[CrossRef]

G. Zhou, X. Wang, D. Wang, Z. Shao, M. Jiang, “Upconversion fluorescence and optical power limiting effects based on the two- and three-photon absorption process of a new organic dye BPAS,” Appl. Opt. 41, 1120–1123 (2002).
[CrossRef] [PubMed]

O. V. Andreeva, I. M. Belousova, V. G. Bespalov, Y. N. Efimov, V. N. Sizov, A. S. Cherkasov, E. Yu Yutanova, A. L. Pyaĩt, “Recording dynamic holograms in toluene solutions of fullerene C60,” J. Opt. Technol. 69, 170–174 (2002).
[CrossRef]

G. S. Maciel, N. Rakov, C. B. Araújo, “Enhanced optical limiting performance of a nonlinear absorber in a solution containing scattering nanoparticles,” Opt. Lett. 27, 740–742 (2002).
[CrossRef]

2001

I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, A. G. Kalintsev, A. V. Kris’ko, N. G. Mironova, M. S. Yur’ev, “Role of light-induced scattering in the optical limitation of laser radiation on the basis of fullerene-containing media,” Opt. Spectrosc. 90, 292–301 (2001).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78, 1189–1191 (2001).
[CrossRef]

2000

1999

D. I. Kovsh, S. Yang, D. J. Hagan, E. W. V. Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 38, 5168–5180 (1999).
[CrossRef]

D. H. Choi, “Effect of temperature on photoinduced reorientation of azobenzene chromophore in the side chain copolymers,” Bull. Korean Chem. Soc. 20, 1010–1016 (1999).

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

For a recent review see C. Dekker, “Carbon nanotubes as molecular quantum wires,” Phys. Today 52, 22–28 (1999).
[CrossRef]

1998

P. Wu, L. Wang, J. Xu, B. Zou, “Transient biphotonic holographic grating in photoisomerization azo materials,” Phys. Rev. B 57, 3874–3880 (1998).
[CrossRef]

1997

1996

G. E. Dovgalenko, M. Klotz, G. J. Salamo, G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287 (1996).
[CrossRef]

1995

T. Ikeda, O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873–1875 (1995).
[CrossRef] [PubMed]

R. A. Hill, S. Dreher, A. Knoesen, D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

1994

M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

W. Ji, A. K. Kukaswadia, Z. C. Feng, S. H. Tang, “Self-defocusing of nanosecond laser pulses in ZnTe,” J. Appl. Phys. 75, 3340–3343 (1994).
[CrossRef]

J. J. Liu, P. P. Banerjee, Q. W. Song, “Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3,” J. Opt. Soc. Am. B 11, 1688–1693 (1994).
[CrossRef]

S. B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).

1992

S. P. Palto, V. A. Khavrichev, S. G. Yudin, L. M. Blinov, A. A. Udal’yev, “On a model of photo-induced optical anisotropy in Langmuir-Blodgett films: low temperature studies,” Mol. Mater. 2, 63–68 (1992).

Andreeva, O. V.

Araújo, C. B.

Banerjee, P. P.

Belousova, I. M.

O. V. Andreeva, I. M. Belousova, V. G. Bespalov, Y. N. Efimov, V. N. Sizov, A. S. Cherkasov, E. Yu Yutanova, A. L. Pyaĩt, “Recording dynamic holograms in toluene solutions of fullerene C60,” J. Opt. Technol. 69, 170–174 (2002).
[CrossRef]

I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, A. G. Kalintsev, A. V. Kris’ko, N. G. Mironova, M. S. Yur’ev, “Role of light-induced scattering in the optical limitation of laser radiation on the basis of fullerene-containing media,” Opt. Spectrosc. 90, 292–301 (2001).
[CrossRef]

Belyaeva, M. A.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

Bespalov, V. G.

Blinov, L. M.

S. P. Palto, V. A. Khavrichev, S. G. Yudin, L. M. Blinov, A. A. Udal’yev, “On a model of photo-induced optical anisotropy in Langmuir-Blodgett films: low temperature studies,” Mol. Mater. 2, 63–68 (1992).

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Bowden, C. M.

M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Caulfield, H. J.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Chen, P.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Cherkasov, A. S.

Chistyakova, O. V.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

Choi, D. H.

D. H. Choi, “Effect of temperature on photoinduced reorientation of azobenzene chromophore in the side chain copolymers,” Bull. Korean Chem. Soc. 20, 1010–1016 (1999).

Danilov, O. B.

I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, A. G. Kalintsev, A. V. Kris’ko, N. G. Mironova, M. S. Yur’ev, “Role of light-induced scattering in the optical limitation of laser radiation on the basis of fullerene-containing media,” Opt. Spectrosc. 90, 292–301 (2001).
[CrossRef]

Danilov, V. V.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

DeCristofano, B. S.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78, 1189–1191 (2001).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Transient optical modulation with a disperse-red-1-doped polymer film,” Appl. Opt. 39, 814–817 (2000).
[CrossRef]

Dekker, C.

For a recent review see C. Dekker, “Carbon nanotubes as molecular quantum wires,” Phys. Today 52, 22–28 (1999).
[CrossRef]

Dogariu, A.

Dovgalenko, G. E.

G. E. Dovgalenko, M. Klotz, G. J. Salamo, G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287 (1996).
[CrossRef]

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Dreher, S.

R. A. Hill, S. Dreher, A. Knoesen, D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

Efimov, Y. N.

Feng, Z. C.

W. Ji, A. K. Kukaswadia, Z. C. Feng, S. H. Tang, “Self-defocusing of nanosecond laser pulses in ZnTe,” J. Appl. Phys. 75, 3340–3343 (1994).
[CrossRef]

Flytzanis, C.

Fournier, J. M.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Frey, R.

Grigor’ev, V. A.

I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, A. G. Kalintsev, A. V. Kris’ko, N. G. Mironova, M. S. Yur’ev, “Role of light-induced scattering in the optical limitation of laser radiation on the basis of fullerene-containing media,” Opt. Spectrosc. 90, 292–301 (2001).
[CrossRef]

Gryaznova, M. V.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

Hagan, D. J.

Hall, H. K.

Hemmer, P.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Hill, R. A.

R. A. Hill, S. Dreher, A. Knoesen, D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

Ikeda, T.

T. Ikeda, O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873–1875 (1995).
[CrossRef] [PubMed]

Ji, W.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

W. Ji, A. K. Kukaswadia, Z. C. Feng, S. H. Tang, “Self-defocusing of nanosecond laser pulses in ZnTe,” J. Appl. Phys. 75, 3340–3343 (1994).
[CrossRef]

Jiang, M.

Kalintsev, A. G.

I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, A. G. Kalintsev, A. V. Kris’ko, N. G. Mironova, M. S. Yur’ev, “Role of light-induced scattering in the optical limitation of laser radiation on the basis of fullerene-containing media,” Opt. Spectrosc. 90, 292–301 (2001).
[CrossRef]

Kamanina, N. V.

N. V. Kamanina, A. I. Plekhanov, “Mechanisms of optical limiting in fullerene-doped π-conjugated organic structure demonstrated with polyimide and COANP molecules,” Opt. Spectrosc. 93, 408–415 (2002).
[CrossRef]

Khavrichev, V. A.

S. P. Palto, V. A. Khavrichev, S. G. Yudin, L. M. Blinov, A. A. Udal’yev, “On a model of photo-induced optical anisotropy in Langmuir-Blodgett films: low temperature studies,” Mol. Mater. 2, 63–68 (1992).

Khrebtov, A. I.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

Kimball, B. R.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78, 1189–1191 (2001).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Transient optical modulation with a disperse-red-1-doped polymer film,” Appl. Opt. 39, 814–817 (2000).
[CrossRef]

Kippelen, B.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Kippelen, S. B.

Klotz, M.

G. E. Dovgalenko, M. Klotz, G. J. Salamo, G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287 (1996).
[CrossRef]

Knoesen, A.

R. A. Hill, S. Dreher, A. Knoesen, D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

Kobyakov, A.

Korzinin, Y. L.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Kovsh, D. I.

Kris’ko, A. V.

I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, A. G. Kalintsev, A. V. Kris’ko, N. G. Mironova, M. S. Yur’ev, “Role of light-induced scattering in the optical limitation of laser radiation on the basis of fullerene-containing media,” Opt. Spectrosc. 90, 292–301 (2001).
[CrossRef]

Kukaswadia, A. K.

W. Ji, A. K. Kukaswadia, Z. C. Feng, S. H. Tang, “Self-defocusing of nanosecond laser pulses in ZnTe,” J. Appl. Phys. 75, 3340–3343 (1994).
[CrossRef]

Lepkowicz, R.

Lin, J.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Liu, J. J.

Ludman, J. E.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Lyon, S. R.

Maciel, G. S.

Meerholz, K.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Mironova, N. G.

I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, A. G. Kalintsev, A. V. Kris’ko, N. G. Mironova, M. S. Yur’ev, “Role of light-induced scattering in the optical limitation of laser radiation on the basis of fullerene-containing media,” Opt. Spectrosc. 90, 292–301 (2001).
[CrossRef]

Nakashima, M.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78, 1189–1191 (2001).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Transient optical modulation with a disperse-red-1-doped polymer film,” Appl. Opt. 39, 814–817 (2000).
[CrossRef]

Padias, A. B.

Palto, S. P.

S. P. Palto, V. A. Khavrichev, S. G. Yudin, L. M. Blinov, A. A. Udal’yev, “On a model of photo-induced optical anisotropy in Langmuir-Blodgett films: low temperature studies,” Mol. Mater. 2, 63–68 (1992).

Peyghambarian, N.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

S. B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).

Philip, R.

R. Philip, G. Ravindra Kumar, N. Sandhyarani, T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160–13166 (2000).
[CrossRef]

Plekhanov, A. I.

N. V. Kamanina, A. I. Plekhanov, “Mechanisms of optical limiting in fullerene-doped π-conjugated organic structure demonstrated with polyimide and COANP molecules,” Opt. Spectrosc. 93, 408–415 (2002).
[CrossRef]

Pradeep, T.

R. Philip, G. Ravindra Kumar, N. Sandhyarani, T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160–13166 (2000).
[CrossRef]

Pyait, A. L.

Rakov, N.

Rao, D. V. G. L. N.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78, 1189–1191 (2001).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Transient optical modulation with a disperse-red-1-doped polymer film,” Appl. Opt. 39, 814–817 (2000).
[CrossRef]

Ravindra Kumar, G.

R. Philip, G. Ravindra Kumar, N. Sandhyarani, T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160–13166 (2000).
[CrossRef]

Reinhand, N. O.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Riccobono, J. R.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Said, A. A.

Salamo, G. J.

G. E. Dovgalenko, M. Klotz, G. J. Salamo, G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287 (1996).
[CrossRef]

Sandalphon,

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Sandhyarani, N.

R. Philip, G. Ravindra Kumar, N. Sandhyarani, T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160–13166 (2000).
[CrossRef]

Scalora, M.

M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

Semenova, I. V.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Shahriar, S. M.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Shakhverdov, P. A.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

Shao, Z.

Sizov, V. N.

Song, Q. W.

Stryland, E. W. V.

Sun, X.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Tan, K. L.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Tang, S. H.

W. Ji, A. K. Kukaswadia, Z. C. Feng, S. H. Tang, “Self-defocusing of nanosecond laser pulses in ZnTe,” J. Appl. Phys. 75, 3340–3343 (1994).
[CrossRef]

Tran, P.

Tsutsumi, O.

T. Ikeda, O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873–1875 (1995).
[CrossRef] [PubMed]

Udal’yev, A. A.

S. P. Palto, V. A. Khavrichev, S. G. Yudin, L. M. Blinov, A. A. Udal’yev, “On a model of photo-induced optical anisotropy in Langmuir-Blodgett films: low temperature studies,” Mol. Mater. 2, 63–68 (1992).

Volodin, B. L.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Wang, D.

Wang, L.

P. Wu, L. Wang, J. Xu, B. Zou, “Transient biphotonic holographic grating in photoisomerization azo materials,” Phys. Rev. B 57, 3874–3880 (1998).
[CrossRef]

Wang, X.

Wood, G. L.

G. E. Dovgalenko, M. Klotz, G. J. Salamo, G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287 (1996).
[CrossRef]

Wu, P.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78, 1189–1191 (2001).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Transient optical modulation with a disperse-red-1-doped polymer film,” Appl. Opt. 39, 814–817 (2000).
[CrossRef]

P. Wu, L. Wang, J. Xu, B. Zou, “Transient biphotonic holographic grating in photoisomerization azo materials,” Phys. Rev. B 57, 3874–3880 (1998).
[CrossRef]

Wu, X.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Xia, T.

Xu, J.

P. Wu, L. Wang, J. Xu, B. Zou, “Transient biphotonic holographic grating in photoisomerization azo materials,” Phys. Rev. B 57, 3874–3880 (1998).
[CrossRef]

Yang, S.

Yankelevich, D. R.

R. A. Hill, S. Dreher, A. Knoesen, D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

Yu Yutanova, E.

Yudin, S. G.

S. P. Palto, V. A. Khavrichev, S. G. Yudin, L. M. Blinov, A. A. Udal’yev, “On a model of photo-induced optical anisotropy in Langmuir-Blodgett films: low temperature studies,” Mol. Mater. 2, 63–68 (1992).

Yur’ev, M. S.

I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, A. G. Kalintsev, A. V. Kris’ko, N. G. Mironova, M. S. Yur’ev, “Role of light-induced scattering in the optical limitation of laser radiation on the basis of fullerene-containing media,” Opt. Spectrosc. 90, 292–301 (2001).
[CrossRef]

Zhou, G.

Zou, B.

P. Wu, L. Wang, J. Xu, B. Zou, “Transient biphotonic holographic grating in photoisomerization azo materials,” Phys. Rev. B 57, 3874–3880 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

G. E. Dovgalenko, M. Klotz, G. J. Salamo, G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287 (1996).
[CrossRef]

R. A. Hill, S. Dreher, A. Knoesen, D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett. 78, 1189–1191 (2001).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

Bull. Korean Chem. Soc.

D. H. Choi, “Effect of temperature on photoinduced reorientation of azobenzene chromophore in the side chain copolymers,” Bull. Korean Chem. Soc. 20, 1010–1016 (1999).

J. Appl. Phys.

W. Ji, A. K. Kukaswadia, Z. C. Feng, S. H. Tang, “Self-defocusing of nanosecond laser pulses in ZnTe,” J. Appl. Phys. 75, 3340–3343 (1994).
[CrossRef]

J. Opt. Soc. Am. B

J. Opt. Technol.

Mol. Mater.

S. P. Palto, V. A. Khavrichev, S. G. Yudin, L. M. Blinov, A. A. Udal’yev, “On a model of photo-induced optical anisotropy in Langmuir-Blodgett films: low temperature studies,” Mol. Mater. 2, 63–68 (1992).

Nature (London)

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Opt. Eng.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J. M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Opt. Lett.

Opt. Spectrosc.

N. V. Kamanina, A. I. Plekhanov, “Mechanisms of optical limiting in fullerene-doped π-conjugated organic structure demonstrated with polyimide and COANP molecules,” Opt. Spectrosc. 93, 408–415 (2002).
[CrossRef]

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, A. I. Khrebtov, “Optical limiters based on liquid-crystal microlenses,” Opt. Spectrosc. 92, 614–618 (2002).
[CrossRef]

I. M. Belousova, V. A. Grigor’ev, O. B. Danilov, A. G. Kalintsev, A. V. Kris’ko, N. G. Mironova, M. S. Yur’ev, “Role of light-induced scattering in the optical limitation of laser radiation on the basis of fullerene-containing media,” Opt. Spectrosc. 90, 292–301 (2001).
[CrossRef]

Phys. Rev. B

P. Wu, L. Wang, J. Xu, B. Zou, “Transient biphotonic holographic grating in photoisomerization azo materials,” Phys. Rev. B 57, 3874–3880 (1998).
[CrossRef]

R. Philip, G. Ravindra Kumar, N. Sandhyarani, T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160–13166 (2000).
[CrossRef]

Phys. Rev. Lett.

M. Scalora, J. P. Dowling, C. M. Bowden, M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
[CrossRef] [PubMed]

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Phys. Today

For a recent review see C. Dekker, “Carbon nanotubes as molecular quantum wires,” Phys. Today 52, 22–28 (1999).
[CrossRef]

Science

T. Ikeda, O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873–1875 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption spectrum of 4-dimethylamino-azobenzene PMMA film.

Fig. 2
Fig. 2

Isomerization process of 4-dimethylamino-azobenzene.

Fig. 3
Fig. 3

Experimental setup. P 1, P 2, polarizers; BS, beam splitter; VA, variable attenuator; PR, polarization rotator; A, aperture; S, sample film; BB, beam block; D, detector.

Fig. 4
Fig. 4

Optical power limiting based on photoinduced anisotropy of the azobenzene film. I in and I out are the intensities of the input beam before polarizer P 1 and behind polarizer P 2, respectively. The intensity values for the exciting beam are (a) 8.0, (b) 15.9, (c) 42.4, (d) 91.6 mW/cm2. The dotted curves are the results without the exciting beam.

Fig. 5
Fig. 5

Photoinduced anisotropy in the azobenzene film. The input intensity is 6.4 mW/cm2. Open circles depict the output of the input beam in the absence of the exciting beam, and the dotted curve is a cos2 θ function. Solid circles show the output of the input beam in the presence of the exciting beam of intensity 91.6 mW/cm2.

Fig. 6
Fig. 6

Variation of Δn with the intensity of the input beam. The intensities of the exciting beam are the following: dotted curve, nil; circles, 91.6 mW/cm2; squares, 42.4 mW/cm2; triangles, 15.9 mW/cm2; stars, 8.0 mW/cm2.

Metrics