Abstract

We present a new model to analyze the spatial characteristics of the output beam of conventional (straight-stripe) and tapered superluminescent light-emitting diodes. The device model includes both spontaneous and stimulated emission processes as well as a nonuniform carrier density distribution to correctly represent current spreading and carrier diffusion effects. Near- and far-field intensity profiles computed with this model are accurately verified over a wide range of injection currents by comparisons with experimental results measured from in-house fabricated devices.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Wagner, T. E. Chapuran, “Broadband high-density WDM transmission using superluminescent diodes,” Electron. Lett. 26, 696–697 (1990).
    [CrossRef]
  2. T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
    [CrossRef]
  3. Y. Kashima, A. Maroba, H. Takano, “Linear InGaAsP edge-emitting LEDs for single-mode fiber communications,” J. Lightwave Technol. 12, 1650–1655 (1992).
    [CrossRef]
  4. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999).
    [CrossRef]
  5. W. K. Burns, C.-L. Chen, R. P. Moeller, “Fiber-optic gyroscopes with broadband sources,” J. Lightwave Technol. LT-1, 98–105 (1983).
    [CrossRef]
  6. B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, “A superluminescent diode at 1.3 µm with very low spectral modulation,” IEEE J. Quantum Electron. 30, 703–712 (1994).
    [CrossRef]
  7. N. S. K. Kwong, K. Y. Lau, N. Barchaim, “High-power high-efficiency GaAlAs superluminescent diodes with an internal absorber for lasing suppression,” IEEE J. Quantum Electron. 25, 696–704 (1989).
    [CrossRef]
  8. Y. Kashima, T. Munakata, “Broad spectrum InGaAsP edge-emitting light-emitting diode using selective-area metal-organic vapor-phase epitaxy,” IEEE Photon. Technol. Lett. 10, 1223–1225 (1998).
    [CrossRef]
  9. I. M. Joindot, C. Y. Boisrobert, “Peculiar features of InGaAsP DH superluminescent diodes,” IEEE J. Quantum Electron. 25, 1659–1665 (1989).
    [CrossRef]
  10. I. G. A. Davies, A. R. Goodwin, R. G. Plumb, “High-power Ga(1 – x)Al(x)As edge-emitting LEDs,” in Digest of Conference on Lasers and Electro-optics, June 1981, IEEE J. Quantum Electron.17, 56 (1981).
  11. I. Middlemast, J. Sarma, S. Yunus, “High power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett. 33, 903–904 (1997).
    [CrossRef]
  12. H. Okamoto, M. Wada, Y. Sakai, T. Hirono, Y. Kawaguchi, Y. Kondo, Y. Kadota, K. Kishi, Y. Itaya, “A narrow-beam 1.3-µm superluminescent diode integrated with a spot-size converter and a new type rear absorbing region,” J. Lightwave Technol. 16, 1881–1887 (1998).
    [CrossRef]
  13. G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
    [CrossRef]
  14. T. Takayama, O. Imafuji, Y. Kouchi, M. Yuri, A. Yoshikawa, K. Itoh, “100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure,” IEEE J. Quantum Electron. 32, 1981–1987 (1996).
    [CrossRef]
  15. F. Causa, J. Sarma, S. Yunus, “Characterization of angled tapered superluminescent LEDs,” Appl. Opt. 41, 5045–5050 (2002).
    [CrossRef] [PubMed]
  16. T. Kambayashi, J. Sarma, “Spontaneous emission noise distribution from a gain-guided multimoded waveguide,” IEEE J. Quantum Electron. QE-19, 1084–1091 (1983).
    [CrossRef]
  17. F. Causa, J. Sarma, R. Balasubramanyam, “A new method for computing nonlinear carrier diffusion in semiconductor optical devices,” IEEE Trans. Electron Devices 46, 1135–1139 (1999).
    [CrossRef]
  18. F. Causa, J. Sarma, “A quasi-analytic model for longitudinally nonuniform semiconductor optical sources,” Opt. Commun. 183, 149–157 (2000).
    [CrossRef]
  19. J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” poster paper at 1999 Users Workshop, Industrial Liaison Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, Sheffield, U.K., 8 July 1999.
  20. G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
    [CrossRef]
  21. J. Lai, C. Lin, “Carrier diffusion effects in tapered semiconductor laser amplifiers,” IEEE J. Quantum Electron. 34, 1247–1256 (1998).
    [CrossRef]
  22. W. Streifer, R. D. Burnham, D. R. Scifres, “An analytic study of (GaAl)As gain guided lasers at threshold,” IEEE J. Quantum Electron. QE-18, 856–864 (1982).
    [CrossRef]

2002

2000

F. Causa, J. Sarma, “A quasi-analytic model for longitudinally nonuniform semiconductor optical sources,” Opt. Commun. 183, 149–157 (2000).
[CrossRef]

1999

F. Causa, J. Sarma, R. Balasubramanyam, “A new method for computing nonlinear carrier diffusion in semiconductor optical devices,” IEEE Trans. Electron Devices 46, 1135–1139 (1999).
[CrossRef]

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

1998

Y. Kashima, T. Munakata, “Broad spectrum InGaAsP edge-emitting light-emitting diode using selective-area metal-organic vapor-phase epitaxy,” IEEE Photon. Technol. Lett. 10, 1223–1225 (1998).
[CrossRef]

J. Lai, C. Lin, “Carrier diffusion effects in tapered semiconductor laser amplifiers,” IEEE J. Quantum Electron. 34, 1247–1256 (1998).
[CrossRef]

H. Okamoto, M. Wada, Y. Sakai, T. Hirono, Y. Kawaguchi, Y. Kondo, Y. Kadota, K. Kishi, Y. Itaya, “A narrow-beam 1.3-µm superluminescent diode integrated with a spot-size converter and a new type rear absorbing region,” J. Lightwave Technol. 16, 1881–1887 (1998).
[CrossRef]

1997

I. Middlemast, J. Sarma, S. Yunus, “High power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett. 33, 903–904 (1997).
[CrossRef]

1996

T. Takayama, O. Imafuji, Y. Kouchi, M. Yuri, A. Yoshikawa, K. Itoh, “100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure,” IEEE J. Quantum Electron. 32, 1981–1987 (1996).
[CrossRef]

1994

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, “A superluminescent diode at 1.3 µm with very low spectral modulation,” IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

1992

Y. Kashima, A. Maroba, H. Takano, “Linear InGaAsP edge-emitting LEDs for single-mode fiber communications,” J. Lightwave Technol. 12, 1650–1655 (1992).
[CrossRef]

1990

S. S. Wagner, T. E. Chapuran, “Broadband high-density WDM transmission using superluminescent diodes,” Electron. Lett. 26, 696–697 (1990).
[CrossRef]

1989

N. S. K. Kwong, K. Y. Lau, N. Barchaim, “High-power high-efficiency GaAlAs superluminescent diodes with an internal absorber for lasing suppression,” IEEE J. Quantum Electron. 25, 696–704 (1989).
[CrossRef]

I. M. Joindot, C. Y. Boisrobert, “Peculiar features of InGaAsP DH superluminescent diodes,” IEEE J. Quantum Electron. 25, 1659–1665 (1989).
[CrossRef]

1988

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
[CrossRef]

1983

T. Kambayashi, J. Sarma, “Spontaneous emission noise distribution from a gain-guided multimoded waveguide,” IEEE J. Quantum Electron. QE-19, 1084–1091 (1983).
[CrossRef]

W. K. Burns, C.-L. Chen, R. P. Moeller, “Fiber-optic gyroscopes with broadband sources,” J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

1982

W. Streifer, R. D. Burnham, D. R. Scifres, “An analytic study of (GaAl)As gain guided lasers at threshold,” IEEE J. Quantum Electron. QE-18, 856–864 (1982).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

Alphonse, G. A.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
[CrossRef]

Balasubramanyam, R.

F. Causa, J. Sarma, R. Balasubramanyam, “A new method for computing nonlinear carrier diffusion in semiconductor optical devices,” IEEE Trans. Electron Devices 46, 1135–1139 (1999).
[CrossRef]

Barchaim, N.

N. S. K. Kwong, K. Y. Lau, N. Barchaim, “High-power high-efficiency GaAlAs superluminescent diodes with an internal absorber for lasing suppression,” IEEE J. Quantum Electron. 25, 696–704 (1989).
[CrossRef]

Boisrobert, C. Y.

I. M. Joindot, C. Y. Boisrobert, “Peculiar features of InGaAsP DH superluminescent diodes,” IEEE J. Quantum Electron. 25, 1659–1665 (1989).
[CrossRef]

Brooks, N. S.

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” poster paper at 1999 Users Workshop, Industrial Liaison Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, Sheffield, U.K., 8 July 1999.

Burnham, R. D.

W. Streifer, R. D. Burnham, D. R. Scifres, “An analytic study of (GaAl)As gain guided lasers at threshold,” IEEE J. Quantum Electron. QE-18, 856–864 (1982).
[CrossRef]

Burns, W. K.

W. K. Burns, C.-L. Chen, R. P. Moeller, “Fiber-optic gyroscopes with broadband sources,” J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

Causa, F.

F. Causa, J. Sarma, S. Yunus, “Characterization of angled tapered superluminescent LEDs,” Appl. Opt. 41, 5045–5050 (2002).
[CrossRef] [PubMed]

F. Causa, J. Sarma, “A quasi-analytic model for longitudinally nonuniform semiconductor optical sources,” Opt. Commun. 183, 149–157 (2000).
[CrossRef]

F. Causa, J. Sarma, R. Balasubramanyam, “A new method for computing nonlinear carrier diffusion in semiconductor optical devices,” IEEE Trans. Electron Devices 46, 1135–1139 (1999).
[CrossRef]

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” poster paper at 1999 Users Workshop, Industrial Liaison Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, Sheffield, U.K., 8 July 1999.

Chapuran, T. E.

S. S. Wagner, T. E. Chapuran, “Broadband high-density WDM transmission using superluminescent diodes,” Electron. Lett. 26, 696–697 (1990).
[CrossRef]

Chen, C.-L.

W. K. Burns, C.-L. Chen, R. P. Moeller, “Fiber-optic gyroscopes with broadband sources,” J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

Davies, I. G. A.

I. G. A. Davies, A. R. Goodwin, R. G. Plumb, “High-power Ga(1 – x)Al(x)As edge-emitting LEDs,” in Digest of Conference on Lasers and Electro-optics, June 1981, IEEE J. Quantum Electron.17, 56 (1981).

Dutta, N. K.

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

Epler, J. E.

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, “A superluminescent diode at 1.3 µm with very low spectral modulation,” IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

Ettenberg, M.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
[CrossRef]

Gilbert, D. B.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
[CrossRef]

Goodwin, A. R.

I. G. A. Davies, A. R. Goodwin, R. G. Plumb, “High-power Ga(1 – x)Al(x)As edge-emitting LEDs,” in Digest of Conference on Lasers and Electro-optics, June 1981, IEEE J. Quantum Electron.17, 56 (1981).

Graf, B.

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, “A superluminescent diode at 1.3 µm with very low spectral modulation,” IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

Harvey, M. G.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
[CrossRef]

Hirono, T.

Iga, K.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Imafuji, O.

T. Takayama, O. Imafuji, Y. Kouchi, M. Yuri, A. Yoshikawa, K. Itoh, “100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure,” IEEE J. Quantum Electron. 32, 1981–1987 (1996).
[CrossRef]

Itaya, Y.

Itoh, K.

T. Takayama, O. Imafuji, Y. Kouchi, M. Yuri, A. Yoshikawa, K. Itoh, “100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure,” IEEE J. Quantum Electron. 32, 1981–1987 (1996).
[CrossRef]

Jackson, D. A.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

Joindot, I. M.

I. M. Joindot, C. Y. Boisrobert, “Peculiar features of InGaAsP DH superluminescent diodes,” IEEE J. Quantum Electron. 25, 1659–1665 (1989).
[CrossRef]

Kadota, Y.

Kambayashi, T.

T. Kambayashi, J. Sarma, “Spontaneous emission noise distribution from a gain-guided multimoded waveguide,” IEEE J. Quantum Electron. QE-19, 1084–1091 (1983).
[CrossRef]

Kashima, Y.

Y. Kashima, T. Munakata, “Broad spectrum InGaAsP edge-emitting light-emitting diode using selective-area metal-organic vapor-phase epitaxy,” IEEE Photon. Technol. Lett. 10, 1223–1225 (1998).
[CrossRef]

Y. Kashima, A. Maroba, H. Takano, “Linear InGaAsP edge-emitting LEDs for single-mode fiber communications,” J. Lightwave Technol. 12, 1650–1655 (1992).
[CrossRef]

Kawaguchi, Y.

Kishi, K.

Kondo, Y.

Kouchi, Y.

T. Takayama, O. Imafuji, Y. Kouchi, M. Yuri, A. Yoshikawa, K. Itoh, “100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure,” IEEE J. Quantum Electron. 32, 1981–1987 (1996).
[CrossRef]

Koyama, F.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Kwong, N. S. K.

N. S. K. Kwong, K. Y. Lau, N. Barchaim, “High-power high-efficiency GaAlAs superluminescent diodes with an internal absorber for lasing suppression,” IEEE J. Quantum Electron. 25, 696–704 (1989).
[CrossRef]

Lai, J.

J. Lai, C. Lin, “Carrier diffusion effects in tapered semiconductor laser amplifiers,” IEEE J. Quantum Electron. 34, 1247–1256 (1998).
[CrossRef]

Lau, K. Y.

N. S. K. Kwong, K. Y. Lau, N. Barchaim, “High-power high-efficiency GaAlAs superluminescent diodes with an internal absorber for lasing suppression,” IEEE J. Quantum Electron. 25, 696–704 (1989).
[CrossRef]

Lehmann, H. W.

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, “A superluminescent diode at 1.3 µm with very low spectral modulation,” IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

Lin, C.

J. Lai, C. Lin, “Carrier diffusion effects in tapered semiconductor laser amplifiers,” IEEE J. Quantum Electron. 34, 1247–1256 (1998).
[CrossRef]

Maroba, A.

Y. Kashima, A. Maroba, H. Takano, “Linear InGaAsP edge-emitting LEDs for single-mode fiber communications,” J. Lightwave Technol. 12, 1650–1655 (1992).
[CrossRef]

Middlemast, I.

I. Middlemast, J. Sarma, S. Yunus, “High power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett. 33, 903–904 (1997).
[CrossRef]

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” poster paper at 1999 Users Workshop, Industrial Liaison Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, Sheffield, U.K., 8 July 1999.

Moeller, R. P.

W. K. Burns, C.-L. Chen, R. P. Moeller, “Fiber-optic gyroscopes with broadband sources,” J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

Mori, S.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Munakata, T.

Y. Kashima, T. Munakata, “Broad spectrum InGaAsP edge-emitting light-emitting diode using selective-area metal-organic vapor-phase epitaxy,” IEEE Photon. Technol. Lett. 10, 1223–1225 (1998).
[CrossRef]

Okamoto, H.

Patterson, B. D.

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, “A superluminescent diode at 1.3 µm with very low spectral modulation,” IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

Plumb, R. G.

I. G. A. Davies, A. R. Goodwin, R. G. Plumb, “High-power Ga(1 – x)Al(x)As edge-emitting LEDs,” in Digest of Conference on Lasers and Electro-optics, June 1981, IEEE J. Quantum Electron.17, 56 (1981).

Podoleanu, A. G.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

Rogers, J. A.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

Ryan, T.

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” poster paper at 1999 Users Workshop, Industrial Liaison Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, Sheffield, U.K., 8 July 1999.

Sakai, Y.

Sarma, J.

F. Causa, J. Sarma, S. Yunus, “Characterization of angled tapered superluminescent LEDs,” Appl. Opt. 41, 5045–5050 (2002).
[CrossRef] [PubMed]

F. Causa, J. Sarma, “A quasi-analytic model for longitudinally nonuniform semiconductor optical sources,” Opt. Commun. 183, 149–157 (2000).
[CrossRef]

F. Causa, J. Sarma, R. Balasubramanyam, “A new method for computing nonlinear carrier diffusion in semiconductor optical devices,” IEEE Trans. Electron Devices 46, 1135–1139 (1999).
[CrossRef]

I. Middlemast, J. Sarma, S. Yunus, “High power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett. 33, 903–904 (1997).
[CrossRef]

T. Kambayashi, J. Sarma, “Spontaneous emission noise distribution from a gain-guided multimoded waveguide,” IEEE J. Quantum Electron. QE-19, 1084–1091 (1983).
[CrossRef]

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” poster paper at 1999 Users Workshop, Industrial Liaison Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, Sheffield, U.K., 8 July 1999.

Scifres, D. R.

W. Streifer, R. D. Burnham, D. R. Scifres, “An analytic study of (GaAl)As gain guided lasers at threshold,” IEEE J. Quantum Electron. QE-18, 856–864 (1982).
[CrossRef]

Sigg, H. C.

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, “A superluminescent diode at 1.3 µm with very low spectral modulation,” IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

Streifer, W.

W. Streifer, R. D. Burnham, D. R. Scifres, “An analytic study of (GaAl)As gain guided lasers at threshold,” IEEE J. Quantum Electron. QE-18, 856–864 (1982).
[CrossRef]

Takano, H.

Y. Kashima, A. Maroba, H. Takano, “Linear InGaAsP edge-emitting LEDs for single-mode fiber communications,” J. Lightwave Technol. 12, 1650–1655 (1992).
[CrossRef]

Takayama, T.

T. Takayama, O. Imafuji, Y. Kouchi, M. Yuri, A. Yoshikawa, K. Itoh, “100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure,” IEEE J. Quantum Electron. 32, 1981–1987 (1996).
[CrossRef]

Wada, M.

Wagner, S. S.

S. S. Wagner, T. E. Chapuran, “Broadband high-density WDM transmission using superluminescent diodes,” Electron. Lett. 26, 696–697 (1990).
[CrossRef]

Yamatoya, T.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Yoshikawa, A.

T. Takayama, O. Imafuji, Y. Kouchi, M. Yuri, A. Yoshikawa, K. Itoh, “100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure,” IEEE J. Quantum Electron. 32, 1981–1987 (1996).
[CrossRef]

Yunus, S.

F. Causa, J. Sarma, S. Yunus, “Characterization of angled tapered superluminescent LEDs,” Appl. Opt. 41, 5045–5050 (2002).
[CrossRef] [PubMed]

I. Middlemast, J. Sarma, S. Yunus, “High power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett. 33, 903–904 (1997).
[CrossRef]

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” poster paper at 1999 Users Workshop, Industrial Liaison Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, Sheffield, U.K., 8 July 1999.

Yuri, M.

T. Takayama, O. Imafuji, Y. Kouchi, M. Yuri, A. Yoshikawa, K. Itoh, “100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure,” IEEE J. Quantum Electron. 32, 1981–1987 (1996).
[CrossRef]

Appl. Opt.

Electron. Lett.

S. S. Wagner, T. E. Chapuran, “Broadband high-density WDM transmission using superluminescent diodes,” Electron. Lett. 26, 696–697 (1990).
[CrossRef]

I. Middlemast, J. Sarma, S. Yunus, “High power tapered superluminescent diodes using novel etched deflectors,” Electron. Lett. 33, 903–904 (1997).
[CrossRef]

IEEE J. Quantum Electron.

T. Kambayashi, J. Sarma, “Spontaneous emission noise distribution from a gain-guided multimoded waveguide,” IEEE J. Quantum Electron. QE-19, 1084–1091 (1983).
[CrossRef]

J. Lai, C. Lin, “Carrier diffusion effects in tapered semiconductor laser amplifiers,” IEEE J. Quantum Electron. 34, 1247–1256 (1998).
[CrossRef]

W. Streifer, R. D. Burnham, D. R. Scifres, “An analytic study of (GaAl)As gain guided lasers at threshold,” IEEE J. Quantum Electron. QE-18, 856–864 (1982).
[CrossRef]

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 12, 2454–2457 (1988).
[CrossRef]

T. Takayama, O. Imafuji, Y. Kouchi, M. Yuri, A. Yoshikawa, K. Itoh, “100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure,” IEEE J. Quantum Electron. 32, 1981–1987 (1996).
[CrossRef]

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, “A superluminescent diode at 1.3 µm with very low spectral modulation,” IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

N. S. K. Kwong, K. Y. Lau, N. Barchaim, “High-power high-efficiency GaAlAs superluminescent diodes with an internal absorber for lasing suppression,” IEEE J. Quantum Electron. 25, 696–704 (1989).
[CrossRef]

I. M. Joindot, C. Y. Boisrobert, “Peculiar features of InGaAsP DH superluminescent diodes,” IEEE J. Quantum Electron. 25, 1659–1665 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Kashima, T. Munakata, “Broad spectrum InGaAsP edge-emitting light-emitting diode using selective-area metal-organic vapor-phase epitaxy,” IEEE Photon. Technol. Lett. 10, 1223–1225 (1998).
[CrossRef]

IEEE Trans. Electron Devices

F. Causa, J. Sarma, R. Balasubramanyam, “A new method for computing nonlinear carrier diffusion in semiconductor optical devices,” IEEE Trans. Electron Devices 46, 1135–1139 (1999).
[CrossRef]

J. Lightwave Technol.

H. Okamoto, M. Wada, Y. Sakai, T. Hirono, Y. Kawaguchi, Y. Kondo, Y. Kadota, K. Kishi, Y. Itaya, “A narrow-beam 1.3-µm superluminescent diode integrated with a spot-size converter and a new type rear absorbing region,” J. Lightwave Technol. 16, 1881–1887 (1998).
[CrossRef]

W. K. Burns, C.-L. Chen, R. P. Moeller, “Fiber-optic gyroscopes with broadband sources,” J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

Y. Kashima, A. Maroba, H. Takano, “Linear InGaAsP edge-emitting LEDs for single-mode fiber communications,” J. Lightwave Technol. 12, 1650–1655 (1992).
[CrossRef]

Jpn. J. Appl. Phys.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High-power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Opt. Commun.

F. Causa, J. Sarma, “A quasi-analytic model for longitudinally nonuniform semiconductor optical sources,” Opt. Commun. 183, 149–157 (2000).
[CrossRef]

Other

J. Sarma, F. Causa, N. S. Brooks, S. Yunus, T. Ryan, I. Middlemast, “Characterization of materials for optoelectronic device applications,” poster paper at 1999 Users Workshop, Industrial Liaison Meeting, Engineering and Physical Sciences Research Council, Sheffield Central Facility for III–V Semiconductors, Sheffield, U.K., 8 July 1999.

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

I. G. A. Davies, A. R. Goodwin, R. G. Plumb, “High-power Ga(1 – x)Al(x)As edge-emitting LEDs,” in Digest of Conference on Lasers and Electro-optics, June 1981, IEEE J. Quantum Electron.17, 56 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of a typical edge-emitting SLED.

Fig. 2
Fig. 2

Top view schematic of the geometry utilized for modeling SLEDs.

Fig. 3
Fig. 3

Output optical power versus input current for in-house fabricated devices: dashed curve, SSLED (W = 50 µm, L = 1000 µm); solid curve, TSLED (W = 100 µm, L = 1000 µm); (a) for low injection currents (b) for a wide range of injection currents.

Fig. 4
Fig. 4

Experimental apparatus for detection of the near intensity profile.

Fig. 5
Fig. 5

Schematic illustrating current spreading in a typical DH semiconductor material SLED.

Fig. 6
Fig. 6

(a) Near intensity profile for a SSLED at low injection current, I = 60 mA: solid curve, experimental near intensity profile; dashed curve, numerical solution of the diffusion equation; dotted curve, best-fitting SG representation. (b) Corresponding carrier density profile: dashed curve, numerical solution of the diffusion equation; dotted curve, best-fitting SG representation. SSLED device geometry, Wout = 50 µm, L = 1000 µm; model parameters, q(z) = q = 4, WN = 55 µm, Wtot = 136 µm, d = 0.35 µm, Ag = 1.5 × 10-16 cm2, nmat = 3.5.

Fig. 7
Fig. 7

Near intensity profile of an SSLED at I = 0.2 A and I = 2 A (shifted for clarity): dots, experimental profiles; solid curve, solution from the model; dashed curve, analytic closed-form solution. SSLED device geometry; Wout = 50 µm, L = 1000 µm. Model parameters: Ntr = 1.5 × 1018 cm-3, q(z) = q = 6, WN = 45 µm, Wtot = 136 µm, Γ = 0.6, lens (NA) = 0.54.

Fig. 8
Fig. 8

Near intensity profile of a TSLED at I = 0.5 A and I = 1.5 A (shifted for clarity): dots, experimental profiles; solid curve, solution from the model; dashed curve, analytic closed-form solution. TSLED device geometry: Wout = 100 µm, L = 1000 µm. Model parameters: Ntr = 1.1 × 1018 cm-3, q(z = 0) = 2, q(z = L) = 8, WN = 140 µm, Wtot = 200 µm, Γ = 0.7, lens (NA) = 0.54.

Fig. 9
Fig. 9

Far-field intensity profile of SSLED at I = 1 A: dots, experimental profile; solid curve, solution from the model; dashed curve, analytic closed-form solution. Device and model parameters are as in the caption of Fig. 7.

Fig. 10
Fig. 10

Far-field intensity profile of TSLED at I = 0.8 A: dots, experimental profile; solid curve, solution from the model; dashed curve, analytic closed-form solution. Device and model parameters are as in the caption of Fig. 8.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Gx, z=ΓAgNx, z-Ntr,
R=xfcosθ for 0<θθ1,
R=Lcosπ2-θ for θ1<θθ2,
R=Wtot-xfcosπ-θ for θ2<θ<π.
dPds=GNsPs+δ Nsτspν,
Pxf, L; θ=expG¯R-1Psp,
Nx, z=Nmaxzexp-2xWNzqz,
x=xF-R-scosθ,
z=L-R-ssinθ.
INFxf=-θaθa Pxf, L; θdθ.
IFFθ=- Pxf, L; θdxf.
D d2Nx; zdx2-Nx; zτN+Jyx; zqd=0,
Nx; z0, dNx; zdx0 for |x|.

Metrics