Abstract

We report improvements to and better characterization of the spectral purity of a diode laser injection-seeded, cavity-locked titanium:sapphire laser that serves as the source for a previously reported rubidium vapor spectrally filtered Thomson scattering apparatus at 780.24 nm. In a detailed set of measurements the spectral purity P of the laser, defined as the ratio of the narrowband component of the laser output to the total output, has been studied as a function of frequency mismatch between the seed laser frequency and the central frequency of the unseeded cavity. It is found that spectral purity exceeding 0.999 can be obtained for a seed-cavity mismatch as high as ±0.25 nm, corresponding to approximately 950 cavity longitudinal-mode spacings and as high as ∼0.9999 for a cavity-seed mismatch in the range ±0.10 nm (380 mode spacings). It is also shown that the addition of an external-cavity stimulated Brillouin-scattering phase-conjugate mirror increases both the spectral purity, to a minimum of 0.99999, and the cavity-seed mismatch range, to ±0.25 nm, for which this maximum effective purity is obtained.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, Measurement Science and Technology 12(4), 2001, which is a special issue outlining recent progress in molecular filter-based diagnostics.
  2. H. Shimizu, S. Lee, C. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983).
    [CrossRef] [PubMed]
  3. R. Miles, W. Lempert, “Two-dimensional measurement of density, velocity, and temperature of turbulent air flows from UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
    [CrossRef]
  4. M. Samimy, M. P. Wernet, “Review of planar multiple-component velocimetry in high speed flows,” AIAA J. 38, 553–574 (2000).
    [CrossRef]
  5. H. Komine, S. J. Brosnan, “Instantaneous, three component, Doppler global velocimetry,” Laser Anemometry 1, 273–277 (1991).
  6. L. P. Bakker, J. M. Freriks, F. J. deGroog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
    [CrossRef]
  7. S. Z. Zaidi, Z. Tang, A. Yalin, P. Barker, R. Miles, “Filtered Thomson scattering in an argon plasma,” AIAA J. 40, 1087–1093 (2002).
    [CrossRef]
  8. D. Hoffman, K.-U. Münch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996).
    [CrossRef] [PubMed]
  9. G. S. Elliott, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
    [CrossRef]
  10. J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
    [CrossRef]
  11. Y. K. Park, G. Guilliani, R. L. Byer, “Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking,” Opt. Lett. 5, 96–98 (1980).
    [CrossRef] [PubMed]
  12. R. L. Schmitt, L. A. Rahn, “Diode-laser-pumped Nd:YAG laser injection system,” Appl. Opt. 25, 629–633 (1986).
    [CrossRef] [PubMed]
  13. G. A. Rines, P. F. Moulton, “Performance of gain-switched Ti:Al2O3 unstable-resonator lasers,” Opt. Lett. 15, 434–436 (1990).
    [CrossRef] [PubMed]
  14. W. Lee, W. R. Lempert, “Spectrally filtered Raman/Thomson scattering using a rubidium vapor filter,” AIAA J. 40, 2504–2510 (2002).
    [CrossRef]
  15. R. D. Guenard, Y.-H. Lee, M. Bolshov, D. Heuber, B. W. Smith, J. D. Winefordner, “Characteristics of a rubidium metal vapor filter for laser scattering rejection in single molecule detection,” Appl. Spectrosc. 50, 188–197 (1996).
    [CrossRef]
  16. R. Clops, M. Fink, P. L. Varghese, D. Young, “Thermodynamic studies of subsonic gas flow using a laser diode Raman spectrometer,” Appl. Spectrosc. 54, 1391–1398 (2000).
    [CrossRef]
  17. P. Palm, E. Plonjes, I. V. Adamovich, V. V. Subramaniam, W. R. Lempert, J. W. Rich, “High pressure air plasmas sustained by an electron beam and enhanced by optical pumping,” paper AIAA-2001-2937, presented at the 32nd Plasmadynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).
  18. N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, G. A. Rines, “Cavity locked, injection seeded titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA-96-0177, presented at the 34th Aerospace Sciences Meeting, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).
  19. C. K. Ni, A. H. Kung, “Effective suppression of amplified spontaneous emission by stimulated Brillouin scattering phase conjugation,” Opt. Lett. 21, 1673–1675 (1996).
    [CrossRef] [PubMed]
  20. J. Gustafsson, D. Rojas, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb atoms in atmospheric pressure atomizers by the 2f-wavelength modulation technique,” Spectrochim. Acta Part B 52, 1937–1953 (1997).
    [CrossRef]
  21. A. P. Yalin, P. F. Barker, R. B. Miles, “Characterization of laser seeding by use of group-velocity dispersion in an atomic-vapor filter,” Opt. Lett. 25, 502–504 (2000).
    [CrossRef]

2002 (2)

S. Z. Zaidi, Z. Tang, A. Yalin, P. Barker, R. Miles, “Filtered Thomson scattering in an argon plasma,” AIAA J. 40, 1087–1093 (2002).
[CrossRef]

W. Lee, W. R. Lempert, “Spectrally filtered Raman/Thomson scattering using a rubidium vapor filter,” AIAA J. 40, 2504–2510 (2002).
[CrossRef]

2001 (2)

G. S. Elliott, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

See, for example, Measurement Science and Technology 12(4), 2001, which is a special issue outlining recent progress in molecular filter-based diagnostics.

2000 (4)

M. Samimy, M. P. Wernet, “Review of planar multiple-component velocimetry in high speed flows,” AIAA J. 38, 553–574 (2000).
[CrossRef]

L. P. Bakker, J. M. Freriks, F. J. deGroog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
[CrossRef]

R. Clops, M. Fink, P. L. Varghese, D. Young, “Thermodynamic studies of subsonic gas flow using a laser diode Raman spectrometer,” Appl. Spectrosc. 54, 1391–1398 (2000).
[CrossRef]

A. P. Yalin, P. F. Barker, R. B. Miles, “Characterization of laser seeding by use of group-velocity dispersion in an atomic-vapor filter,” Opt. Lett. 25, 502–504 (2000).
[CrossRef]

1997 (1)

J. Gustafsson, D. Rojas, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb atoms in atmospheric pressure atomizers by the 2f-wavelength modulation technique,” Spectrochim. Acta Part B 52, 1937–1953 (1997).
[CrossRef]

1996 (3)

1993 (1)

J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
[CrossRef]

1991 (1)

H. Komine, S. J. Brosnan, “Instantaneous, three component, Doppler global velocimetry,” Laser Anemometry 1, 273–277 (1991).

1990 (2)

R. Miles, W. Lempert, “Two-dimensional measurement of density, velocity, and temperature of turbulent air flows from UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
[CrossRef]

G. A. Rines, P. F. Moulton, “Performance of gain-switched Ti:Al2O3 unstable-resonator lasers,” Opt. Lett. 15, 434–436 (1990).
[CrossRef] [PubMed]

1986 (1)

1983 (1)

1980 (1)

Adamovich, I. V.

P. Palm, E. Plonjes, I. V. Adamovich, V. V. Subramaniam, W. R. Lempert, J. W. Rich, “High pressure air plasmas sustained by an electron beam and enhanced by optical pumping,” paper AIAA-2001-2937, presented at the 32nd Plasmadynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Axner, O.

J. Gustafsson, D. Rojas, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb atoms in atmospheric pressure atomizers by the 2f-wavelength modulation technique,” Spectrochim. Acta Part B 52, 1937–1953 (1997).
[CrossRef]

Bakker, L. P.

L. P. Bakker, J. M. Freriks, F. J. deGroog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
[CrossRef]

Barker, P.

S. Z. Zaidi, Z. Tang, A. Yalin, P. Barker, R. Miles, “Filtered Thomson scattering in an argon plasma,” AIAA J. 40, 1087–1093 (2002).
[CrossRef]

Barker, P. F.

Barnes, J. C.

J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
[CrossRef]

Barnes, N. P.

J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
[CrossRef]

Bolshov, M.

Brosnan, S. J.

H. Komine, S. J. Brosnan, “Instantaneous, three component, Doppler global velocimetry,” Laser Anemometry 1, 273–277 (1991).

Byer, R. L.

Carter, C. D.

G. S. Elliott, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

Clops, R.

deGroog, F. J.

L. P. Bakker, J. M. Freriks, F. J. deGroog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
[CrossRef]

Edwards, W.

J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
[CrossRef]

Elliott, G. S.

G. S. Elliott, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

Finch, A.

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, G. A. Rines, “Cavity locked, injection seeded titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA-96-0177, presented at the 34th Aerospace Sciences Meeting, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

Fink, M.

Finkelstein, N. D.

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, G. A. Rines, “Cavity locked, injection seeded titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA-96-0177, presented at the 34th Aerospace Sciences Meeting, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

Freriks, J. M.

L. P. Bakker, J. M. Freriks, F. J. deGroog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
[CrossRef]

Glumac, N.

G. S. Elliott, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

Guenard, R. D.

Guilliani, G.

Gustafsson, J.

J. Gustafsson, D. Rojas, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb atoms in atmospheric pressure atomizers by the 2f-wavelength modulation technique,” Spectrochim. Acta Part B 52, 1937–1953 (1997).
[CrossRef]

Heuber, D.

Hoffman, D.

Komine, H.

H. Komine, S. J. Brosnan, “Instantaneous, three component, Doppler global velocimetry,” Laser Anemometry 1, 273–277 (1991).

Kroesen, G. M. W.

L. P. Bakker, J. M. Freriks, F. J. deGroog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
[CrossRef]

Kung, A. H.

Lee, S.

Lee, W.

W. Lee, W. R. Lempert, “Spectrally filtered Raman/Thomson scattering using a rubidium vapor filter,” AIAA J. 40, 2504–2510 (2002).
[CrossRef]

Lee, Y.-H.

Leipertz, A.

Lempert, W.

R. Miles, W. Lempert, “Two-dimensional measurement of density, velocity, and temperature of turbulent air flows from UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
[CrossRef]

Lempert, W. R.

W. Lee, W. R. Lempert, “Spectrally filtered Raman/Thomson scattering using a rubidium vapor filter,” AIAA J. 40, 2504–2510 (2002).
[CrossRef]

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, G. A. Rines, “Cavity locked, injection seeded titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA-96-0177, presented at the 34th Aerospace Sciences Meeting, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

P. Palm, E. Plonjes, I. V. Adamovich, V. V. Subramaniam, W. R. Lempert, J. W. Rich, “High pressure air plasmas sustained by an electron beam and enhanced by optical pumping,” paper AIAA-2001-2937, presented at the 32nd Plasmadynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Miles, R.

S. Z. Zaidi, Z. Tang, A. Yalin, P. Barker, R. Miles, “Filtered Thomson scattering in an argon plasma,” AIAA J. 40, 1087–1093 (2002).
[CrossRef]

R. Miles, W. Lempert, “Two-dimensional measurement of density, velocity, and temperature of turbulent air flows from UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
[CrossRef]

Miles, R. B.

A. P. Yalin, P. F. Barker, R. B. Miles, “Characterization of laser seeding by use of group-velocity dispersion in an atomic-vapor filter,” Opt. Lett. 25, 502–504 (2000).
[CrossRef]

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, G. A. Rines, “Cavity locked, injection seeded titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA-96-0177, presented at the 34th Aerospace Sciences Meeting, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

Moulton, P. F.

Münch, K.-U.

Ni, C. K.

Palm, P.

P. Palm, E. Plonjes, I. V. Adamovich, V. V. Subramaniam, W. R. Lempert, J. W. Rich, “High pressure air plasmas sustained by an electron beam and enhanced by optical pumping,” paper AIAA-2001-2937, presented at the 32nd Plasmadynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Park, Y. K.

Plonjes, E.

P. Palm, E. Plonjes, I. V. Adamovich, V. V. Subramaniam, W. R. Lempert, J. W. Rich, “High pressure air plasmas sustained by an electron beam and enhanced by optical pumping,” paper AIAA-2001-2937, presented at the 32nd Plasmadynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Rahn, L. A.

Rich, J. W.

P. Palm, E. Plonjes, I. V. Adamovich, V. V. Subramaniam, W. R. Lempert, J. W. Rich, “High pressure air plasmas sustained by an electron beam and enhanced by optical pumping,” paper AIAA-2001-2937, presented at the 32nd Plasmadynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Rines, G. A.

G. A. Rines, P. F. Moulton, “Performance of gain-switched Ti:Al2O3 unstable-resonator lasers,” Opt. Lett. 15, 434–436 (1990).
[CrossRef] [PubMed]

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, G. A. Rines, “Cavity locked, injection seeded titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA-96-0177, presented at the 34th Aerospace Sciences Meeting, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

Rojas, D.

J. Gustafsson, D. Rojas, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb atoms in atmospheric pressure atomizers by the 2f-wavelength modulation technique,” Spectrochim. Acta Part B 52, 1937–1953 (1997).
[CrossRef]

Samimy, M.

M. Samimy, M. P. Wernet, “Review of planar multiple-component velocimetry in high speed flows,” AIAA J. 38, 553–574 (2000).
[CrossRef]

Schmitt, R. L.

She, C.

Shimizu, H.

Smith, B. W.

Subramaniam, V. V.

P. Palm, E. Plonjes, I. V. Adamovich, V. V. Subramaniam, W. R. Lempert, J. W. Rich, “High pressure air plasmas sustained by an electron beam and enhanced by optical pumping,” paper AIAA-2001-2937, presented at the 32nd Plasmadynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

Tang, Z.

S. Z. Zaidi, Z. Tang, A. Yalin, P. Barker, R. Miles, “Filtered Thomson scattering in an argon plasma,” AIAA J. 40, 1087–1093 (2002).
[CrossRef]

Varghese, P. L.

Wang, L. G.

J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
[CrossRef]

Wernet, M. P.

M. Samimy, M. P. Wernet, “Review of planar multiple-component velocimetry in high speed flows,” AIAA J. 38, 553–574 (2000).
[CrossRef]

Winefordner, J. D.

Yalin, A.

S. Z. Zaidi, Z. Tang, A. Yalin, P. Barker, R. Miles, “Filtered Thomson scattering in an argon plasma,” AIAA J. 40, 1087–1093 (2002).
[CrossRef]

Yalin, A. P.

Young, D.

Zaidi, S. Z.

S. Z. Zaidi, Z. Tang, A. Yalin, P. Barker, R. Miles, “Filtered Thomson scattering in an argon plasma,” AIAA J. 40, 1087–1093 (2002).
[CrossRef]

AIAA J. (3)

M. Samimy, M. P. Wernet, “Review of planar multiple-component velocimetry in high speed flows,” AIAA J. 38, 553–574 (2000).
[CrossRef]

S. Z. Zaidi, Z. Tang, A. Yalin, P. Barker, R. Miles, “Filtered Thomson scattering in an argon plasma,” AIAA J. 40, 1087–1093 (2002).
[CrossRef]

W. Lee, W. R. Lempert, “Spectrally filtered Raman/Thomson scattering using a rubidium vapor filter,” AIAA J. 40, 2504–2510 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

R. Miles, W. Lempert, “Two-dimensional measurement of density, velocity, and temperature of turbulent air flows from UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990).
[CrossRef]

Appl. Spectrosc. (2)

IEEE J. Quantum Electron. (1)

J. C. Barnes, N. P. Barnes, L. G. Wang, W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
[CrossRef]

Laser Anemometry (1)

H. Komine, S. J. Brosnan, “Instantaneous, three component, Doppler global velocimetry,” Laser Anemometry 1, 273–277 (1991).

Meas. Sci. Technol. (1)

G. S. Elliott, N. Glumac, C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

Measurement Science and Technology (1)

See, for example, Measurement Science and Technology 12(4), 2001, which is a special issue outlining recent progress in molecular filter-based diagnostics.

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

L. P. Bakker, J. M. Freriks, F. J. deGroog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
[CrossRef]

Spectrochim. Acta Part B (1)

J. Gustafsson, D. Rojas, O. Axner, “The influence of hyperfine structure and isotope shift on the detection of Rb atoms in atmospheric pressure atomizers by the 2f-wavelength modulation technique,” Spectrochim. Acta Part B 52, 1937–1953 (1997).
[CrossRef]

Other (2)

P. Palm, E. Plonjes, I. V. Adamovich, V. V. Subramaniam, W. R. Lempert, J. W. Rich, “High pressure air plasmas sustained by an electron beam and enhanced by optical pumping,” paper AIAA-2001-2937, presented at the 32nd Plasmadynamics and Lasers Conference, Anaheim, Calif., 11–14 June 2001 (American Institute of Aeronautics and Astronautics, Reston, Va., 2001).

N. D. Finkelstein, W. R. Lempert, R. B. Miles, A. Finch, G. A. Rines, “Cavity locked, injection seeded titanium:sapphire laser and application to ultraviolet flow diagnostics,” paper AIAA-96-0177, presented at the 34th Aerospace Sciences Meeting, Reno, Nev., 15–18 January 1996 (American Institute of Aeronautics and Astronautics, Reston, Va., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the filtered Thomson scattering apparatus.

Fig. 2
Fig. 2

Experimental and modeled transmission function of a rubidium vapor cell at 310 °C.

Fig. 3
Fig. 3

Pure rotational Raman spectra of 500-Torr N2 at room temperature (a) without and (b) with the vapor filter employed. Titanium:sapphire is injection seeded but is not cavity locked.

Fig. 4
Fig. 4

Residual elastic scattering transmitted by the 320 °C vapor filter as a function of a circulating seed power in the range 0–0.026 mW.

Fig. 5
Fig. 5

Sample fit of residual transmitted scattering to the convolution of the assumed Gaussian profile with the filter transmission given in Fig. 2.

Fig. 6
Fig. 6

Measured spectral purity as a function of circulating seed power. For clarity, data for circulating seed power exceeding 0.30 mW are not plotted.

Fig. 7
Fig. 7

Spectrum of injection-seeded titanium:sapphire laser output with a seed frequency of 780.24 nm and a cavity central frequency of ∼780.8 nm. Approximately 50% of the laser output was pulled to the seed frequency, corresponding to the leftmost peak.

Fig. 8
Fig. 8

(a) Residual elastic scattering from the cavity-locked laser, transmitted by a 280 °C vapor filter with a cavity-seed mismatch of 0.25 nm. The spectral purity is 0.9991. (b) Identical to (a) except that both the cavity central frequency and the seed frequency are equal to 780.24 nm. The spectral purity is 0.9999.

Fig. 9
Fig. 9

Spectral purity as function of cavity-seed mismatch for cavity-locked laser (diamonds) and for laser plus SBS PCM (squares). Uncertainty is ∼0.00001 dimensionless units.

Fig. 10
Fig. 10

Residual scattering identical to Fig. 8(b) except that a PCM is employed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Eseed  P/1-P

Metrics