Abstract

A bundle of optical fibers was constructed to deliver Q-switched frequency-doubled Nd:YAG laser pulses for the purpose of particle image velocimetry. Data loss that is due to fiber speckle was reduced by ensuring that each fiber was different in length by more than the coherence length of the laser being delivered. Hence, their speckle patterns will overlap but not interfere, producing more even illumination that is shown to reduce data loss. A custom-made diffractive optical element and careful endface preparation help to reduce damage to the fibers by the required high peak powers. With this method, pulse energies in excess of 25 mJ were delivered for a series of experimental trials within the cylinder head of an optically accessed internal combustion engine. Results from these trials are presented along with a comparison of measurements generated by conventionally delivered beams.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Stanislas, J. C. Monnier, “Practical aspects of image recording in particle image velocimetry,” Meas. Sci. Technol. 8, 1417–1426 (1997).
    [CrossRef]
  2. J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8, 1379–1392 (1977).
    [CrossRef]
  3. R. D. Keane, “Correlation methods of PIV analysis,” in Optical Diagnostics for Flow Processes (Plenum, New York, 1994), pp 271–289.
    [CrossRef]
  4. R. D. Keane, R. J. Adrian, “Theory of cross-correlation of PIV images,” Appl. Sci. Res. 49, 191–215.
  5. U. Dierkeide, P. Meyer, T. Hovestadt, W. Hentschel, “Endoscopic 2D-PIV flow field measurements in IC engines,” presented at the Fourth International Symposium on Particle Image Velocimetry (PIV’01), Goettingen, Germany, 17–19 September 2001.
  6. M. Raffel, C. Willert, J. Kompenhans, “Physical and technical background: tracer particles,” in Particle Image Velocimetry—A Practical Guide (Springer-Verlag, Berlin, 1998), pp. 13–22.
    [CrossRef]
  7. D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C Jones, W. J. Easson, C. A. Greated, “An optical fibre delivery system for pulsed laser particle image velocimetry illumination,” Meas. Sci. Technol. 6, 809–814 (1995).
    [CrossRef]
  8. D. P. Hand, J. D. Entwistle, R. R. J. Maier, A. Kuhn, C. A. Greated, J. D. C. Jones, “Fibre optic beam delivery system for high peak power laser PIV illumination,” Meas. Sci. Technol. 10, 239–245 (1999).
    [CrossRef]
  9. J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, E. Noponen, A. Vasara, “Kinoform array illuminators in fused silica,” J. Mod. Opt. 40, 723–732 (1993).
    [CrossRef]
  10. J. W. Goodman, A. M. Silvestri, “Some effects of Fourier-domain phase quantisation,” IBM J. Res. Dev. 14, 478–484 (1970).
    [CrossRef]
  11. M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219–242 (1997).
    [CrossRef]
  12. R. D. Keane, R. J. Adrian, “Theory of cross-correlation of PIV images,” in Flow Visualization and Analysis, F. T. M. Nieuwstadt, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 1–25.
    [CrossRef]
  13. M.-A. Beeck, W. Hentschel, “Laser metrology—a diagnostic tool in automotive development processes,” Opt. Lasers Eng. 34, 101–120 (2000).
    [CrossRef]
  14. M. Reeves, C. P. Garner, J. C. Dent, N. A. Halliwell, “Particle image velocimetry measurements of barrel swirl in a production geometry optical IC engine,” SAE paper 940281 (Society of Automotive Engineers, New York, N.Y., 1994).

2000

M.-A. Beeck, W. Hentschel, “Laser metrology—a diagnostic tool in automotive development processes,” Opt. Lasers Eng. 34, 101–120 (2000).
[CrossRef]

1999

D. P. Hand, J. D. Entwistle, R. R. J. Maier, A. Kuhn, C. A. Greated, J. D. C. Jones, “Fibre optic beam delivery system for high peak power laser PIV illumination,” Meas. Sci. Technol. 10, 239–245 (1999).
[CrossRef]

1997

M. Stanislas, J. C. Monnier, “Practical aspects of image recording in particle image velocimetry,” Meas. Sci. Technol. 8, 1417–1426 (1997).
[CrossRef]

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219–242 (1997).
[CrossRef]

1995

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C Jones, W. J. Easson, C. A. Greated, “An optical fibre delivery system for pulsed laser particle image velocimetry illumination,” Meas. Sci. Technol. 6, 809–814 (1995).
[CrossRef]

1993

J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, E. Noponen, A. Vasara, “Kinoform array illuminators in fused silica,” J. Mod. Opt. 40, 723–732 (1993).
[CrossRef]

1977

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8, 1379–1392 (1977).
[CrossRef]

1970

J. W. Goodman, A. M. Silvestri, “Some effects of Fourier-domain phase quantisation,” IBM J. Res. Dev. 14, 478–484 (1970).
[CrossRef]

Adrian, R. J.

R. D. Keane, R. J. Adrian, “Theory of cross-correlation of PIV images,” Appl. Sci. Res. 49, 191–215.

R. D. Keane, R. J. Adrian, “Theory of cross-correlation of PIV images,” in Flow Visualization and Analysis, F. T. M. Nieuwstadt, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 1–25.
[CrossRef]

Anderson, D. J.

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C Jones, W. J. Easson, C. A. Greated, “An optical fibre delivery system for pulsed laser particle image velocimetry illumination,” Meas. Sci. Technol. 6, 809–814 (1995).
[CrossRef]

Barton, I. M.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219–242 (1997).
[CrossRef]

Beeck, M.-A.

M.-A. Beeck, W. Hentschel, “Laser metrology—a diagnostic tool in automotive development processes,” Opt. Lasers Eng. 34, 101–120 (2000).
[CrossRef]

Blair, P.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219–242 (1997).
[CrossRef]

Dent, J. C.

M. Reeves, C. P. Garner, J. C. Dent, N. A. Halliwell, “Particle image velocimetry measurements of barrel swirl in a production geometry optical IC engine,” SAE paper 940281 (Society of Automotive Engineers, New York, N.Y., 1994).

Dierkeide, U.

U. Dierkeide, P. Meyer, T. Hovestadt, W. Hentschel, “Endoscopic 2D-PIV flow field measurements in IC engines,” presented at the Fourth International Symposium on Particle Image Velocimetry (PIV’01), Goettingen, Germany, 17–19 September 2001.

Easson, W. J.

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C Jones, W. J. Easson, C. A. Greated, “An optical fibre delivery system for pulsed laser particle image velocimetry illumination,” Meas. Sci. Technol. 6, 809–814 (1995).
[CrossRef]

Entwistle, J. D.

D. P. Hand, J. D. Entwistle, R. R. J. Maier, A. Kuhn, C. A. Greated, J. D. C. Jones, “Fibre optic beam delivery system for high peak power laser PIV illumination,” Meas. Sci. Technol. 10, 239–245 (1999).
[CrossRef]

Garner, C. P.

M. Reeves, C. P. Garner, J. C. Dent, N. A. Halliwell, “Particle image velocimetry measurements of barrel swirl in a production geometry optical IC engine,” SAE paper 940281 (Society of Automotive Engineers, New York, N.Y., 1994).

Goodman, J. W.

J. W. Goodman, A. M. Silvestri, “Some effects of Fourier-domain phase quantisation,” IBM J. Res. Dev. 14, 478–484 (1970).
[CrossRef]

Greated, C. A.

D. P. Hand, J. D. Entwistle, R. R. J. Maier, A. Kuhn, C. A. Greated, J. D. C. Jones, “Fibre optic beam delivery system for high peak power laser PIV illumination,” Meas. Sci. Technol. 10, 239–245 (1999).
[CrossRef]

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C Jones, W. J. Easson, C. A. Greated, “An optical fibre delivery system for pulsed laser particle image velocimetry illumination,” Meas. Sci. Technol. 6, 809–814 (1995).
[CrossRef]

Halliwell, N. A.

M. Reeves, C. P. Garner, J. C. Dent, N. A. Halliwell, “Particle image velocimetry measurements of barrel swirl in a production geometry optical IC engine,” SAE paper 940281 (Society of Automotive Engineers, New York, N.Y., 1994).

Hand, D. P.

D. P. Hand, J. D. Entwistle, R. R. J. Maier, A. Kuhn, C. A. Greated, J. D. C. Jones, “Fibre optic beam delivery system for high peak power laser PIV illumination,” Meas. Sci. Technol. 10, 239–245 (1999).
[CrossRef]

Hentschel, W.

M.-A. Beeck, W. Hentschel, “Laser metrology—a diagnostic tool in automotive development processes,” Opt. Lasers Eng. 34, 101–120 (2000).
[CrossRef]

U. Dierkeide, P. Meyer, T. Hovestadt, W. Hentschel, “Endoscopic 2D-PIV flow field measurements in IC engines,” presented at the Fourth International Symposium on Particle Image Velocimetry (PIV’01), Goettingen, Germany, 17–19 September 2001.

Hovestadt, T.

U. Dierkeide, P. Meyer, T. Hovestadt, W. Hentschel, “Endoscopic 2D-PIV flow field measurements in IC engines,” presented at the Fourth International Symposium on Particle Image Velocimetry (PIV’01), Goettingen, Germany, 17–19 September 2001.

Jones, J. D. C

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C Jones, W. J. Easson, C. A. Greated, “An optical fibre delivery system for pulsed laser particle image velocimetry illumination,” Meas. Sci. Technol. 6, 809–814 (1995).
[CrossRef]

Jones, J. D. C.

D. P. Hand, J. D. Entwistle, R. R. J. Maier, A. Kuhn, C. A. Greated, J. D. C. Jones, “Fibre optic beam delivery system for high peak power laser PIV illumination,” Meas. Sci. Technol. 10, 239–245 (1999).
[CrossRef]

Keane, R. D.

R. D. Keane, “Correlation methods of PIV analysis,” in Optical Diagnostics for Flow Processes (Plenum, New York, 1994), pp 271–289.
[CrossRef]

R. D. Keane, R. J. Adrian, “Theory of cross-correlation of PIV images,” Appl. Sci. Res. 49, 191–215.

R. D. Keane, R. J. Adrian, “Theory of cross-correlation of PIV images,” in Flow Visualization and Analysis, F. T. M. Nieuwstadt, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 1–25.
[CrossRef]

Kompenhans, J.

M. Raffel, C. Willert, J. Kompenhans, “Physical and technical background: tracer particles,” in Particle Image Velocimetry—A Practical Guide (Springer-Verlag, Berlin, 1998), pp. 13–22.
[CrossRef]

Kuhn, A.

D. P. Hand, J. D. Entwistle, R. R. J. Maier, A. Kuhn, C. A. Greated, J. D. C. Jones, “Fibre optic beam delivery system for high peak power laser PIV illumination,” Meas. Sci. Technol. 10, 239–245 (1999).
[CrossRef]

Layet, B.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219–242 (1997).
[CrossRef]

Maier, R. R. J.

D. P. Hand, J. D. Entwistle, R. R. J. Maier, A. Kuhn, C. A. Greated, J. D. C. Jones, “Fibre optic beam delivery system for high peak power laser PIV illumination,” Meas. Sci. Technol. 10, 239–245 (1999).
[CrossRef]

McCluskey, D. R.

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C Jones, W. J. Easson, C. A. Greated, “An optical fibre delivery system for pulsed laser particle image velocimetry illumination,” Meas. Sci. Technol. 6, 809–814 (1995).
[CrossRef]

Meyer, P.

U. Dierkeide, P. Meyer, T. Hovestadt, W. Hentschel, “Endoscopic 2D-PIV flow field measurements in IC engines,” presented at the Fourth International Symposium on Particle Image Velocimetry (PIV’01), Goettingen, Germany, 17–19 September 2001.

Miller, J. M.

J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, E. Noponen, A. Vasara, “Kinoform array illuminators in fused silica,” J. Mod. Opt. 40, 723–732 (1993).
[CrossRef]

Monnier, J. C.

M. Stanislas, J. C. Monnier, “Practical aspects of image recording in particle image velocimetry,” Meas. Sci. Technol. 8, 1417–1426 (1997).
[CrossRef]

Morgan, R. D.

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C Jones, W. J. Easson, C. A. Greated, “An optical fibre delivery system for pulsed laser particle image velocimetry illumination,” Meas. Sci. Technol. 6, 809–814 (1995).
[CrossRef]

Noponen, E.

J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, E. Noponen, A. Vasara, “Kinoform array illuminators in fused silica,” J. Mod. Opt. 40, 723–732 (1993).
[CrossRef]

Raffel, M.

M. Raffel, C. Willert, J. Kompenhans, “Physical and technical background: tracer particles,” in Particle Image Velocimetry—A Practical Guide (Springer-Verlag, Berlin, 1998), pp. 13–22.
[CrossRef]

Reeves, M.

M. Reeves, C. P. Garner, J. C. Dent, N. A. Halliwell, “Particle image velocimetry measurements of barrel swirl in a production geometry optical IC engine,” SAE paper 940281 (Society of Automotive Engineers, New York, N.Y., 1994).

Ross, N.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219–242 (1997).
[CrossRef]

J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, E. Noponen, A. Vasara, “Kinoform array illuminators in fused silica,” J. Mod. Opt. 40, 723–732 (1993).
[CrossRef]

Silvestri, A. M.

J. W. Goodman, A. M. Silvestri, “Some effects of Fourier-domain phase quantisation,” IBM J. Res. Dev. 14, 478–484 (1970).
[CrossRef]

Stanislas, M.

M. Stanislas, J. C. Monnier, “Practical aspects of image recording in particle image velocimetry,” Meas. Sci. Technol. 8, 1417–1426 (1997).
[CrossRef]

Taghizadeh, M. R.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219–242 (1997).
[CrossRef]

J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, E. Noponen, A. Vasara, “Kinoform array illuminators in fused silica,” J. Mod. Opt. 40, 723–732 (1993).
[CrossRef]

Turunen, J.

J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, E. Noponen, A. Vasara, “Kinoform array illuminators in fused silica,” J. Mod. Opt. 40, 723–732 (1993).
[CrossRef]

Vasara, A.

J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, E. Noponen, A. Vasara, “Kinoform array illuminators in fused silica,” J. Mod. Opt. 40, 723–732 (1993).
[CrossRef]

Waddie, A. J.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219–242 (1997).
[CrossRef]

Westerweel, J.

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8, 1379–1392 (1977).
[CrossRef]

Willert, C.

M. Raffel, C. Willert, J. Kompenhans, “Physical and technical background: tracer particles,” in Particle Image Velocimetry—A Practical Guide (Springer-Verlag, Berlin, 1998), pp. 13–22.
[CrossRef]

Appl. Sci. Res.

R. D. Keane, R. J. Adrian, “Theory of cross-correlation of PIV images,” Appl. Sci. Res. 49, 191–215.

IBM J. Res. Dev.

J. W. Goodman, A. M. Silvestri, “Some effects of Fourier-domain phase quantisation,” IBM J. Res. Dev. 14, 478–484 (1970).
[CrossRef]

J. Mod. Opt.

J. M. Miller, M. R. Taghizadeh, J. Turunen, N. Ross, E. Noponen, A. Vasara, “Kinoform array illuminators in fused silica,” J. Mod. Opt. 40, 723–732 (1993).
[CrossRef]

Meas. Sci. Technol.

D. J. Anderson, R. D. Morgan, D. R. McCluskey, J. D. C Jones, W. J. Easson, C. A. Greated, “An optical fibre delivery system for pulsed laser particle image velocimetry illumination,” Meas. Sci. Technol. 6, 809–814 (1995).
[CrossRef]

D. P. Hand, J. D. Entwistle, R. R. J. Maier, A. Kuhn, C. A. Greated, J. D. C. Jones, “Fibre optic beam delivery system for high peak power laser PIV illumination,” Meas. Sci. Technol. 10, 239–245 (1999).
[CrossRef]

M. Stanislas, J. C. Monnier, “Practical aspects of image recording in particle image velocimetry,” Meas. Sci. Technol. 8, 1417–1426 (1997).
[CrossRef]

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8, 1379–1392 (1977).
[CrossRef]

Microelectron. Eng.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219–242 (1997).
[CrossRef]

Opt. Lasers Eng.

M.-A. Beeck, W. Hentschel, “Laser metrology—a diagnostic tool in automotive development processes,” Opt. Lasers Eng. 34, 101–120 (2000).
[CrossRef]

Other

M. Reeves, C. P. Garner, J. C. Dent, N. A. Halliwell, “Particle image velocimetry measurements of barrel swirl in a production geometry optical IC engine,” SAE paper 940281 (Society of Automotive Engineers, New York, N.Y., 1994).

R. D. Keane, R. J. Adrian, “Theory of cross-correlation of PIV images,” in Flow Visualization and Analysis, F. T. M. Nieuwstadt, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 1–25.
[CrossRef]

R. D. Keane, “Correlation methods of PIV analysis,” in Optical Diagnostics for Flow Processes (Plenum, New York, 1994), pp 271–289.
[CrossRef]

U. Dierkeide, P. Meyer, T. Hovestadt, W. Hentschel, “Endoscopic 2D-PIV flow field measurements in IC engines,” presented at the Fourth International Symposium on Particle Image Velocimetry (PIV’01), Goettingen, Germany, 17–19 September 2001.

M. Raffel, C. Willert, J. Kompenhans, “Physical and technical background: tracer particles,” in Particle Image Velocimetry—A Practical Guide (Springer-Verlag, Berlin, 1998), pp. 13–22.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic illustrating the design of the bundle, circular at the input and linear at the output. (b) A micrograph showing the circular input array.

Fig. 2
Fig. 2

False-color image showing the intensity profile of the DOE. The central, zero-order peak can be clearly seen.

Fig. 3
Fig. 3

Probability (%) of first peak being in error for an image illuminated (a) evenly, (b) by a speckle pattern from 19 fibers, and (c) by the speckle pattern from 4 fibers. The probability of an error increases as the sheet becomes less evenly lit.

Fig. 4
Fig. 4

False-color image showing a typical speckle pattern from a single 200-µm multimode optical fiber. The curves shown across the left-hand and bottom axes correspond to the intensity values along the cross hairs in the image.

Fig. 5
Fig. 5

False-color image of the near-field speckle pattern from a linear array of 19 different length 200-µm fibers.

Fig. 6
Fig. 6

Graphs showing how many pixels from a sample of ten rows in a normalized speckle pattern have an intensity greater than a particular percentage of the maximum value in that row are plotted in (a) and (b). A perfectly evenly lit row would appear as a step with an edge at 100% on the x axis. (a) Shows a bundle where all the fibers are the same length ± 5 mm, (b) shows a bundle where all fibers are at least 25 mm different in length (coherence length of the laser in glass is 16 mm), and (c) shows the data from (a) subtracted from (b).

Fig. 7
Fig. 7

Schematic diagram of the optical setup within the probe.

Fig. 8
Fig. 8

Schematic diagram of the experimental setup within the engine. The light sheet position is marked by the heavy dotted line.

Fig. 9
Fig. 9

Graph showing thickness of light sheet used in the tests inside the internal combustion engine.

Fig. 10
Fig. 10

Graph showing the percentage of best-fit vectors that belong to each of the five highest peaks in the correlation plane. Results are given for both fiber- and bulk-optic-delivered light.

Fig. 11
Fig. 11

Sample image from PIV analysis software. The light sheet can be seen to diverge from where it emerges from the port on the right-hand side. The spatial frequency of the vectors was reduced to aid presentation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M2=α0w0λ/π,

Metrics