Abstract

The optical masks prepared by using a LCLV liquid-crystal light valve are first proposed for light-induced photorefractive waveguides in photorefractive materials. Employing this technique, various waveguide structures can be fabricated, e.g., Y- or multiple-branches waveguides, fiber-like waveguides, and Mach–Zehnder-like switches, and even whole optical circuits may be formed. A Y-branches waveguide and a fiber-like waveguide were demonstrated in a LiNbO3:Fe crystal. Several technical problems, such as intensities, resolutions, writing speed, and so on, were also discussed in detail. Using a LCLV with a fast response and a writing beam with a high intensity, the waveguide structures may be changed in real time.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18, 1035–1037 (1993).
  2. K. Itoh, O. Matoba, Y. Ichioka, “Fabrication experiment of photorefractive three-dimensional waveguides in lithium nio-bate,” Opt. Lett. 19, 652–654 (1994).
  3. O. Matoba, K. Itoh, Y. Ichioka, “Array of photorefractive waveguides for massively parallel optical interconnections in lithium niobate,” Opt. Lett. 21, 122–124 (1996).
  4. O. Matoba, T. Inujima, T. Shimura, K. Kuroda, “Segmented photorefractive waveguides in LiNbO3:Fe,” J. Opt. Soc. Am. B 15, 2006–2012 (1998).
  5. A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, B. Fischer, “Optically induced domain waveguides in SrxBa1-xNb2O6 crystals,” Appl. Phys. Lett. 72, 3121–3123 (1998).
  6. Ph. Dittrich, G. Montemezzani, P. Bernasconi, P. Gu¨nter, “Fast, reconfigurable light-induced waveguides,” Opt. Lett. 24, 1508–1510 (1999).
  7. Z. Chen, M. Mitchell, M. Segev, “Steady-state photorefractive soliton-induced Y-junction waveguides and high-order dark spatial solitons,” Opt. Lett. 21, 716–718 (1996).
  8. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett. 21, 943–945 (1996).
  9. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131–150 (1998).
  10. A. Shiratori, R. Aida, R. Hagari, M. Obara, “Two-dimensional visualization of photoinduced refractive index change in photorefractive lithium niobate crystal,” Jpn. J. Appl. Phys. 37, L225–L227 (1998).

1999 (1)

1998 (4)

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, B. Fischer, “Optically induced domain waveguides in SrxBa1-xNb2O6 crystals,” Appl. Phys. Lett. 72, 3121–3123 (1998).

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131–150 (1998).

A. Shiratori, R. Aida, R. Hagari, M. Obara, “Two-dimensional visualization of photoinduced refractive index change in photorefractive lithium niobate crystal,” Jpn. J. Appl. Phys. 37, L225–L227 (1998).

O. Matoba, T. Inujima, T. Shimura, K. Kuroda, “Segmented photorefractive waveguides in LiNbO3:Fe,” J. Opt. Soc. Am. B 15, 2006–2012 (1998).

1996 (3)

1994 (1)

1993 (1)

Aida, R.

A. Shiratori, R. Aida, R. Hagari, M. Obara, “Two-dimensional visualization of photoinduced refractive index change in photorefractive lithium niobate crystal,” Jpn. J. Appl. Phys. 37, L225–L227 (1998).

Bashaw, M. C.

Bekker, A.

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, B. Fischer, “Optically induced domain waveguides in SrxBa1-xNb2O6 crystals,” Appl. Phys. Lett. 72, 3121–3123 (1998).

Berger, N. K.

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, B. Fischer, “Optically induced domain waveguides in SrxBa1-xNb2O6 crystals,” Appl. Phys. Lett. 72, 3121–3123 (1998).

Bernasconi, P.

Chen, Z.

Dittrich, Ph.

Fejer, M. M.

Fischer, B.

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, B. Fischer, “Optically induced domain waveguides in SrxBa1-xNb2O6 crystals,” Appl. Phys. Lett. 72, 3121–3123 (1998).

Frisken, S. J.

Gu¨nter, P.

Hagari, R.

A. Shiratori, R. Aida, R. Hagari, M. Obara, “Two-dimensional visualization of photoinduced refractive index change in photorefractive lithium niobate crystal,” Jpn. J. Appl. Phys. 37, L225–L227 (1998).

Horowitz, M.

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, B. Fischer, “Optically induced domain waveguides in SrxBa1-xNb2O6 crystals,” Appl. Phys. Lett. 72, 3121–3123 (1998).

Ichioka, Y.

Inujima, T.

Itoh, K.

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131–150 (1998).

Kuroda, K.

Matoba, O.

Mitchell, M.

Montemezzani, G.

Obara, M.

A. Shiratori, R. Aida, R. Hagari, M. Obara, “Two-dimensional visualization of photoinduced refractive index change in photorefractive lithium niobate crystal,” Jpn. J. Appl. Phys. 37, L225–L227 (1998).

Peda’el, A.

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, B. Fischer, “Optically induced domain waveguides in SrxBa1-xNb2O6 crystals,” Appl. Phys. Lett. 72, 3121–3123 (1998).

Segev, M.

Shimura, T.

Shiratori, A.

A. Shiratori, R. Aida, R. Hagari, M. Obara, “Two-dimensional visualization of photoinduced refractive index change in photorefractive lithium niobate crystal,” Jpn. J. Appl. Phys. 37, L225–L227 (1998).

Taya, M.

Valley, G. C.

Appl. Phys. B (1)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131–150 (1998).

Appl. Phys. Lett. (1)

A. Bekker, A. Peda’el, N. K. Berger, M. Horowitz, B. Fischer, “Optically induced domain waveguides in SrxBa1-xNb2O6 crystals,” Appl. Phys. Lett. 72, 3121–3123 (1998).

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

A. Shiratori, R. Aida, R. Hagari, M. Obara, “Two-dimensional visualization of photoinduced refractive index change in photorefractive lithium niobate crystal,” Jpn. J. Appl. Phys. 37, L225–L227 (1998).

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sketch of the optical system for fabricating and testing the photorefractive waveguides. LCLV: liquid-crystal light valve; L: lens; T: telescope; P: polarizer; PBS: polarized beam split prism; C: crystal; CCD: charge-coupled device.

Fig. 2
Fig. 2

Experimental setup for measuring the refractive index change in photorefractive crystals. T: telescope; M: mirror; BS: beam split prisms; P: polarizer; L: lens; CCD: charge-coupled device.

Fig. 3
Fig. 3

(a) Mask for Y-branches waveguide fabrication designed by a computer. (b) Output of the mask in (a) from an LCLV. (c) Near-field pattern of the waveguide region. (d) Interferogram in the waveguide region.

Fig. 4
Fig. 4

Distribution of the refractive index change in a Y-branches waveguide region.

Fig. 5
Fig. 5

(a) Mask for fiber-like waveguide fabrication designed by a computer. (b) Output of the mask in (a) from an LCLV. (c) Near-field pattern of the waveguide region. (d) Interferogram in the waveguide region.

Fig. 6
Fig. 6

Distribution of the refractive index change in a fiber-like waveguide region.

Fig. 7
Fig. 7

Experimental results for the guiding test of the Y-branches waveguide and the fiber-like waveguide. Top: for Y-branches waveguide; bottom: for fiber-like waveguide. The intensity patterns of the probe beam are shown: (a) without guidance; (b) with guidance. The corresponding gray distributions along the white arrows are shown in (c) top and bottom: dashed line for (a), solid line for (b).

Metrics