Abstract

Statistical optimization method for the design of a fluorinated polyimide wavelength division element for optical communications is proposed. The optimized device is an interleaver element suitable for dividing over 40 wavelengths in the 1550 nm band. Optimization considers the inherent polarization dependence of fluorinated polyimide based on measurements of the dispersion characteristics and birefringence of fluorinated polyimide film. A 40-wavelength device is designed by use of the proposed technique for a working wavelength of 1550 nm and a wavelength interval of 0.8 nm. The device exhibited a 1-dB passband of 0.5 nm and a 3-dB passband of 0.8 nm, and output wavelength fluctuation due to polarization effects of less than 0.08 nm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takahashi, K. Okamoto, Y. Inoue, “Arrayed-waveguide grating wavelength multiplexers for WDM system,” NTT Review 10, 30–36 (1998).
  2. K. Takada, M. Abe, T. Shibata, K. Okamoto, “10 GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001).
    [CrossRef]
  3. M. Oguma, K. Jinguji, T. Kitoh, T. Sibata, A. Himeno, “Flat-passband interleave filter with 200 GHz channel spacing based on planar lightwave circuit-type lattice structure,” Electron. Lett. 36, 1299–1300 (2000).
    [CrossRef]
  4. M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, Y. Hibino, “Flat-top and low-loss WDM filter composed of lattice-form interleave filter and arrayed-waveguide gratings on one chip.” OFC’2001, Technical Digest, pp. WB3-1–WB3-3, Anaheim, California(2001).
  5. K. Jinguji, M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18, 252–259 (2000).
    [CrossRef]
  6. J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, K. Sullivan, “Integrated interleaver technology enables high performance in DWDM systems,” Technical Proceedings, National Fiber Optic Engineers Conference, pp. 1410–1421, Baltimore (2001).
  7. T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Uetseka, “Novel architecture of wavelength interleaving filter with Fourier transform based MZIs,” OFC’2001, Technical Digest, pp. WB5-1–WB5-3, Anaheim, California (2001).
  8. T. Mizuno, T. Kitoh, T. Saida, M. Oguma, T. Shibata, Y. Hibino, “Dispersionless interleave filter based on transversal form optical filter,” Electron. Letts. 38, 1121–1122 (2002).
    [CrossRef]
  9. T. Kurokawa, N. Takato, Y. Katayama, “Polymer optical circuits for multimode optical fiber systems,” Appl. Opt. 19, 3124–3129 (1980).
    [CrossRef] [PubMed]
  10. R. Reuter, H. Franke, C. Feger, “Evaluating polyimides as lightguide materials,” Appl. Opt. 27, 4565–4571 (1988).
    [CrossRef] [PubMed]
  11. D. H. Hartman, G. R. Lalk, J. W. Howse, R. R. Krchnavek, “Radiant cured polymer optical waveguides on printed circuit boards for photonic interconnection use,” Appl. Opt. 28, 40–47 (1989).
    [CrossRef] [PubMed]
  12. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
    [CrossRef]
  13. N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, “4 × 4 polymer thermo-optic directional coupler switch at 1.55 μm,” Electron. Lett. 30, 1445–1453 (1989).
  14. T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymetric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
    [CrossRef]
  15. J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, T. Maruno, “Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches,” IEEE J. Lightwave Technol. 16, 1024–1029 (1998).
    [CrossRef]
  16. T. Matsuura, J. Kobayashi, S. Ando, T. Maruno, S. Sasaki, F. Yamamoto, “Heat-resistant flexible-film optical waveguides from fluorinated polyimides,” Appl. Opt. 38, 966–971 (1999).
    [CrossRef]
  17. J. W. Kang, J. P. Kim, W. Y. Lee, S. J. S. Kim, J. S. Lee, J. J. Kim, “Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability,” IEEE J. Lightwave Technol. 19, 872–875 (2001).
    [CrossRef]
  18. H. Takahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” IEEE J. Lightwave Technol. 13, 447–455 (1995).
    [CrossRef]
  19. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuit, (Ohm Co., Ltd.Tokyo, Japan1993).
  20. B. X. Chen, H. L. Lu, D. X. Zhao, Y. F. Yuan, M. Iso, “Optimized design of temperature-insensitive optical waveguide coupler with 120-nm bandwidth using fluorinated polyimide,” Appl. Opt. 42, 271–274 (2003).
    [CrossRef] [PubMed]

2003 (1)

2002 (1)

T. Mizuno, T. Kitoh, T. Saida, M. Oguma, T. Shibata, Y. Hibino, “Dispersionless interleave filter based on transversal form optical filter,” Electron. Letts. 38, 1121–1122 (2002).
[CrossRef]

2001 (2)

K. Takada, M. Abe, T. Shibata, K. Okamoto, “10 GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001).
[CrossRef]

J. W. Kang, J. P. Kim, W. Y. Lee, S. J. S. Kim, J. S. Lee, J. J. Kim, “Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability,” IEEE J. Lightwave Technol. 19, 872–875 (2001).
[CrossRef]

2000 (2)

M. Oguma, K. Jinguji, T. Kitoh, T. Sibata, A. Himeno, “Flat-passband interleave filter with 200 GHz channel spacing based on planar lightwave circuit-type lattice structure,” Electron. Lett. 36, 1299–1300 (2000).
[CrossRef]

K. Jinguji, M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18, 252–259 (2000).
[CrossRef]

1999 (1)

1998 (2)

J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, T. Maruno, “Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches,” IEEE J. Lightwave Technol. 16, 1024–1029 (1998).
[CrossRef]

H. Takahashi, K. Okamoto, Y. Inoue, “Arrayed-waveguide grating wavelength multiplexers for WDM system,” NTT Review 10, 30–36 (1998).

1997 (1)

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymetric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

1995 (1)

H. Takahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” IEEE J. Lightwave Technol. 13, 447–455 (1995).
[CrossRef]

1989 (3)

D. H. Hartman, G. R. Lalk, J. W. Howse, R. R. Krchnavek, “Radiant cured polymer optical waveguides on printed circuit boards for photonic interconnection use,” Appl. Opt. 28, 40–47 (1989).
[CrossRef] [PubMed]

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, “4 × 4 polymer thermo-optic directional coupler switch at 1.55 μm,” Electron. Lett. 30, 1445–1453 (1989).

1988 (1)

1980 (1)

Abe, M.

K. Takada, M. Abe, T. Shibata, K. Okamoto, “10 GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001).
[CrossRef]

Ando, S.

Arai, H.

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Uetseka, “Novel architecture of wavelength interleaving filter with Fourier transform based MZIs,” OFC’2001, Technical Digest, pp. WB5-1–WB5-3, Anaheim, California (2001).

Booth, B. L.

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

Chen, B. X.

Chiba, T.

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Uetseka, “Novel architecture of wavelength interleaving filter with Fourier transform based MZIs,” OFC’2001, Technical Digest, pp. WB5-1–WB5-3, Anaheim, California (2001).

Chon, J.

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, K. Sullivan, “Integrated interleaver technology enables high performance in DWDM systems,” Technical Proceedings, National Fiber Optic Engineers Conference, pp. 1410–1421, Baltimore (2001).

Feger, C.

Franke, H.

Hartman, D. H.

Haruna, M.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuit, (Ohm Co., Ltd.Tokyo, Japan1993).

Hibino, Y.

T. Mizuno, T. Kitoh, T. Saida, M. Oguma, T. Shibata, Y. Hibino, “Dispersionless interleave filter based on transversal form optical filter,” Electron. Letts. 38, 1121–1122 (2002).
[CrossRef]

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, Y. Hibino, “Flat-top and low-loss WDM filter composed of lattice-form interleave filter and arrayed-waveguide gratings on one chip.” OFC’2001, Technical Digest, pp. WB3-1–WB3-3, Anaheim, California(2001).

Hida, Y.

J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, T. Maruno, “Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches,” IEEE J. Lightwave Technol. 16, 1024–1029 (1998).
[CrossRef]

Himeno, A.

M. Oguma, K. Jinguji, T. Kitoh, T. Sibata, A. Himeno, “Flat-passband interleave filter with 200 GHz channel spacing based on planar lightwave circuit-type lattice structure,” Electron. Lett. 36, 1299–1300 (2000).
[CrossRef]

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, Y. Hibino, “Flat-top and low-loss WDM filter composed of lattice-form interleave filter and arrayed-waveguide gratings on one chip.” OFC’2001, Technical Digest, pp. WB3-1–WB3-3, Anaheim, California(2001).

Howse, J. W.

Inoue, Y.

H. Takahashi, K. Okamoto, Y. Inoue, “Arrayed-waveguide grating wavelength multiplexers for WDM system,” NTT Review 10, 30–36 (1998).

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymetric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

H. Takahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” IEEE J. Lightwave Technol. 13, 447–455 (1995).
[CrossRef]

Iso, M.

Jian, B.

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, K. Sullivan, “Integrated interleaver technology enables high performance in DWDM systems,” Technical Proceedings, National Fiber Optic Engineers Conference, pp. 1410–1421, Baltimore (2001).

Jinguji, K.

M. Oguma, K. Jinguji, T. Kitoh, T. Sibata, A. Himeno, “Flat-passband interleave filter with 200 GHz channel spacing based on planar lightwave circuit-type lattice structure,” Electron. Lett. 36, 1299–1300 (2000).
[CrossRef]

K. Jinguji, M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18, 252–259 (2000).
[CrossRef]

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, Y. Hibino, “Flat-top and low-loss WDM filter composed of lattice-form interleave filter and arrayed-waveguide gratings on one chip.” OFC’2001, Technical Digest, pp. WB3-1–WB3-3, Anaheim, California(2001).

Kaneko, A.

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymetric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

Kang, J. W.

J. W. Kang, J. P. Kim, W. Y. Lee, S. J. S. Kim, J. S. Lee, J. J. Kim, “Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability,” IEEE J. Lightwave Technol. 19, 872–875 (2001).
[CrossRef]

Katayama, Y.

Keil, N.

N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, “4 × 4 polymer thermo-optic directional coupler switch at 1.55 μm,” Electron. Lett. 30, 1445–1453 (1989).

Kim, J. J.

J. W. Kang, J. P. Kim, W. Y. Lee, S. J. S. Kim, J. S. Lee, J. J. Kim, “Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability,” IEEE J. Lightwave Technol. 19, 872–875 (2001).
[CrossRef]

Kim, J. P.

J. W. Kang, J. P. Kim, W. Y. Lee, S. J. S. Kim, J. S. Lee, J. J. Kim, “Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability,” IEEE J. Lightwave Technol. 19, 872–875 (2001).
[CrossRef]

Kim, S. J. S.

J. W. Kang, J. P. Kim, W. Y. Lee, S. J. S. Kim, J. S. Lee, J. J. Kim, “Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability,” IEEE J. Lightwave Technol. 19, 872–875 (2001).
[CrossRef]

Kitoh, T.

T. Mizuno, T. Kitoh, T. Saida, M. Oguma, T. Shibata, Y. Hibino, “Dispersionless interleave filter based on transversal form optical filter,” Electron. Letts. 38, 1121–1122 (2002).
[CrossRef]

M. Oguma, K. Jinguji, T. Kitoh, T. Sibata, A. Himeno, “Flat-passband interleave filter with 200 GHz channel spacing based on planar lightwave circuit-type lattice structure,” Electron. Lett. 36, 1299–1300 (2000).
[CrossRef]

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, Y. Hibino, “Flat-top and low-loss WDM filter composed of lattice-form interleave filter and arrayed-waveguide gratings on one chip.” OFC’2001, Technical Digest, pp. WB3-1–WB3-3, Anaheim, California(2001).

Kobayashi, J.

T. Matsuura, J. Kobayashi, S. Ando, T. Maruno, S. Sasaki, F. Yamamoto, “Heat-resistant flexible-film optical waveguides from fluorinated polyimides,” Appl. Opt. 38, 966–971 (1999).
[CrossRef]

J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, T. Maruno, “Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches,” IEEE J. Lightwave Technol. 16, 1024–1029 (1998).
[CrossRef]

Krchnavek, R. R.

Kurihara, T.

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymetric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

Kurokawa, T.

Lalk, G. R.

Lee, J. S.

J. W. Kang, J. P. Kim, W. Y. Lee, S. J. S. Kim, J. S. Lee, J. J. Kim, “Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability,” IEEE J. Lightwave Technol. 19, 872–875 (2001).
[CrossRef]

Lee, W. Y.

J. W. Kang, J. P. Kim, W. Y. Lee, S. J. S. Kim, J. S. Lee, J. J. Kim, “Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability,” IEEE J. Lightwave Technol. 19, 872–875 (2001).
[CrossRef]

Lu, H. L.

Luo, A.

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, K. Sullivan, “Integrated interleaver technology enables high performance in DWDM systems,” Technical Proceedings, National Fiber Optic Engineers Conference, pp. 1410–1421, Baltimore (2001).

Maruno, T.

T. Matsuura, J. Kobayashi, S. Ando, T. Maruno, S. Sasaki, F. Yamamoto, “Heat-resistant flexible-film optical waveguides from fluorinated polyimides,” Appl. Opt. 38, 966–971 (1999).
[CrossRef]

J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, T. Maruno, “Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches,” IEEE J. Lightwave Technol. 16, 1024–1029 (1998).
[CrossRef]

Matsuura, T.

T. Matsuura, J. Kobayashi, S. Ando, T. Maruno, S. Sasaki, F. Yamamoto, “Heat-resistant flexible-film optical waveguides from fluorinated polyimides,” Appl. Opt. 38, 966–971 (1999).
[CrossRef]

J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, T. Maruno, “Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches,” IEEE J. Lightwave Technol. 16, 1024–1029 (1998).
[CrossRef]

Mizuno, T.

T. Mizuno, T. Kitoh, T. Saida, M. Oguma, T. Shibata, Y. Hibino, “Dispersionless interleave filter based on transversal form optical filter,” Electron. Letts. 38, 1121–1122 (2002).
[CrossRef]

Nishihara, H.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuit, (Ohm Co., Ltd.Tokyo, Japan1993).

Nonen, H.

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Uetseka, “Novel architecture of wavelength interleaving filter with Fourier transform based MZIs,” OFC’2001, Technical Digest, pp. WB5-1–WB5-3, Anaheim, California (2001).

Oda, K.

H. Takahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” IEEE J. Lightwave Technol. 13, 447–455 (1995).
[CrossRef]

Oguma, M.

T. Mizuno, T. Kitoh, T. Saida, M. Oguma, T. Shibata, Y. Hibino, “Dispersionless interleave filter based on transversal form optical filter,” Electron. Letts. 38, 1121–1122 (2002).
[CrossRef]

M. Oguma, K. Jinguji, T. Kitoh, T. Sibata, A. Himeno, “Flat-passband interleave filter with 200 GHz channel spacing based on planar lightwave circuit-type lattice structure,” Electron. Lett. 36, 1299–1300 (2000).
[CrossRef]

K. Jinguji, M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18, 252–259 (2000).
[CrossRef]

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, Y. Hibino, “Flat-top and low-loss WDM filter composed of lattice-form interleave filter and arrayed-waveguide gratings on one chip.” OFC’2001, Technical Digest, pp. WB3-1–WB3-3, Anaheim, California(2001).

Ohira, K.

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Uetseka, “Novel architecture of wavelength interleaving filter with Fourier transform based MZIs,” OFC’2001, Technical Digest, pp. WB5-1–WB5-3, Anaheim, California (2001).

Okamoto, K.

K. Takada, M. Abe, T. Shibata, K. Okamoto, “10 GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001).
[CrossRef]

H. Takahashi, K. Okamoto, Y. Inoue, “Arrayed-waveguide grating wavelength multiplexers for WDM system,” NTT Review 10, 30–36 (1998).

Ooba, N.

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymetric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

Peters, P.

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, K. Sullivan, “Integrated interleaver technology enables high performance in DWDM systems,” Technical Proceedings, National Fiber Optic Engineers Conference, pp. 1410–1421, Baltimore (2001).

Reuter, R.

Saida, T.

T. Mizuno, T. Kitoh, T. Saida, M. Oguma, T. Shibata, Y. Hibino, “Dispersionless interleave filter based on transversal form optical filter,” Electron. Letts. 38, 1121–1122 (2002).
[CrossRef]

Sasaki, S.

T. Matsuura, J. Kobayashi, S. Ando, T. Maruno, S. Sasaki, F. Yamamoto, “Heat-resistant flexible-film optical waveguides from fluorinated polyimides,” Appl. Opt. 38, 966–971 (1999).
[CrossRef]

J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, T. Maruno, “Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches,” IEEE J. Lightwave Technol. 16, 1024–1029 (1998).
[CrossRef]

Shibata, T.

T. Mizuno, T. Kitoh, T. Saida, M. Oguma, T. Shibata, Y. Hibino, “Dispersionless interleave filter based on transversal form optical filter,” Electron. Letts. 38, 1121–1122 (2002).
[CrossRef]

K. Takada, M. Abe, T. Shibata, K. Okamoto, “10 GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001).
[CrossRef]

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, Y. Hibino, “Flat-top and low-loss WDM filter composed of lattice-form interleave filter and arrayed-waveguide gratings on one chip.” OFC’2001, Technical Digest, pp. WB3-1–WB3-3, Anaheim, California(2001).

Sibata, T.

M. Oguma, K. Jinguji, T. Kitoh, T. Sibata, A. Himeno, “Flat-passband interleave filter with 200 GHz channel spacing based on planar lightwave circuit-type lattice structure,” Electron. Lett. 36, 1299–1300 (2000).
[CrossRef]

Strebel, B.

N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, “4 × 4 polymer thermo-optic directional coupler switch at 1.55 μm,” Electron. Lett. 30, 1445–1453 (1989).

Suhara, T.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuit, (Ohm Co., Ltd.Tokyo, Japan1993).

Sullivan, K.

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, K. Sullivan, “Integrated interleaver technology enables high performance in DWDM systems,” Technical Proceedings, National Fiber Optic Engineers Conference, pp. 1410–1421, Baltimore (2001).

Takada, K.

K. Takada, M. Abe, T. Shibata, K. Okamoto, “10 GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001).
[CrossRef]

Takahashi, H.

H. Takahashi, K. Okamoto, Y. Inoue, “Arrayed-waveguide grating wavelength multiplexers for WDM system,” NTT Review 10, 30–36 (1998).

H. Takahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” IEEE J. Lightwave Technol. 13, 447–455 (1995).
[CrossRef]

Takato, N.

Toba, H.

H. Takahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” IEEE J. Lightwave Technol. 13, 447–455 (1995).
[CrossRef]

Uetseka, H.

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Uetseka, “Novel architecture of wavelength interleaving filter with Fourier transform based MZIs,” OFC’2001, Technical Digest, pp. WB5-1–WB5-3, Anaheim, California (2001).

Watanabe, T.

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymetric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

Yamamoto, F.

Yao, H. H.

N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, “4 × 4 polymer thermo-optic directional coupler switch at 1.55 μm,” Electron. Lett. 30, 1445–1453 (1989).

Yuan, Y. F.

Zawadzki, C.

N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, “4 × 4 polymer thermo-optic directional coupler switch at 1.55 μm,” Electron. Lett. 30, 1445–1453 (1989).

Zeng, A.

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, K. Sullivan, “Integrated interleaver technology enables high performance in DWDM systems,” Technical Proceedings, National Fiber Optic Engineers Conference, pp. 1410–1421, Baltimore (2001).

Zhao, D. X.

Appl. Opt. (5)

Electron. Lett. (3)

N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, “4 × 4 polymer thermo-optic directional coupler switch at 1.55 μm,” Electron. Lett. 30, 1445–1453 (1989).

T. Watanabe, Y. Inoue, A. Kaneko, N. Ooba, T. Kurihara, “Polymetric arrayed-waveguide grating multiplexer with wide tuning range,” Electron. Lett. 33, 1547–1548 (1997).
[CrossRef]

M. Oguma, K. Jinguji, T. Kitoh, T. Sibata, A. Himeno, “Flat-passband interleave filter with 200 GHz channel spacing based on planar lightwave circuit-type lattice structure,” Electron. Lett. 36, 1299–1300 (2000).
[CrossRef]

Electron. Letts. (1)

T. Mizuno, T. Kitoh, T. Saida, M. Oguma, T. Shibata, Y. Hibino, “Dispersionless interleave filter based on transversal form optical filter,” Electron. Letts. 38, 1121–1122 (2002).
[CrossRef]

IEEE J. Lightwave Technol. (3)

J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, T. Maruno, “Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches,” IEEE J. Lightwave Technol. 16, 1024–1029 (1998).
[CrossRef]

J. W. Kang, J. P. Kim, W. Y. Lee, S. J. S. Kim, J. S. Lee, J. J. Kim, “Low-loss fluorinated poly(arylene ether sulfide) waveguides with high thermal stability,” IEEE J. Lightwave Technol. 19, 872–875 (2001).
[CrossRef]

H. Takahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” IEEE J. Lightwave Technol. 13, 447–455 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Takada, M. Abe, T. Shibata, K. Okamoto, “10 GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001).
[CrossRef]

J. Lightwave Technol. (2)

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

K. Jinguji, M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18, 252–259 (2000).
[CrossRef]

NTT Review (1)

H. Takahashi, K. Okamoto, Y. Inoue, “Arrayed-waveguide grating wavelength multiplexers for WDM system,” NTT Review 10, 30–36 (1998).

Other (4)

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, Y. Hibino, “Flat-top and low-loss WDM filter composed of lattice-form interleave filter and arrayed-waveguide gratings on one chip.” OFC’2001, Technical Digest, pp. WB3-1–WB3-3, Anaheim, California(2001).

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, K. Sullivan, “Integrated interleaver technology enables high performance in DWDM systems,” Technical Proceedings, National Fiber Optic Engineers Conference, pp. 1410–1421, Baltimore (2001).

T. Chiba, H. Arai, K. Ohira, H. Nonen, H. Uetseka, “Novel architecture of wavelength interleaving filter with Fourier transform based MZIs,” OFC’2001, Technical Digest, pp. WB5-1–WB5-3, Anaheim, California (2001).

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuit, (Ohm Co., Ltd.Tokyo, Japan1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of optical interleave wavelength divider.

Fig. 2
Fig. 2

Transmission spectra of a interleaver without optimization.

Fig. 3
Fig. 3

Relationship between 6FDA/TFDB ratio in fluorinated polyimide and refractive index (n TE and n TM) measured for TE and TM modes, and birefringence at 1550 nm.

Fig. 4
Fig. 4

Transmission spectra of 40-channel interleaver for both E11 x and E11 y modes.

Fig. 5
Fig. 5

Transmission spectra around center port for both E11 x and E11 y modes. (a) With polarization-independence design. (b) Without polarization-independence design.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

AoutBout=U*-V*VUAinBin×exp-jβL1+L2+L3
U*-V*VU=e2*-f2*f2e2×expj Δθ2200exp-j Δθ22×e1*-f1*f1e1,
e1=a1a2 expj Δθ12-b1*b2 exp-j Δθ12,
f1=a2b1 expj Δθ12+a1*b2 exp-j Δθ12,
e2=a3a4 exp-j Δθ32-b3*b4 expj Δθ32,
f2=a4b3 exp-j Δθ32+a3*b4 expj Δθ32,
Δθi=βΔLi; i=1, 2, 3,
ai=cosπ2LciLi+Lei; i=1, 2, 3, 4,
bi=-j sinπ2LciLi+Lei; i = 1, 2, 3, 4,
ηCRO=|Aout|2|Aout|2+|Bout|2=|V|2|V|2+|U|2.
ηTHR=1-ηCRO.
ηCRO=ηCROLi, ΔLj, Lei, Lci, β; i=1, 2, 3, 4; j=1, 2, 3.
Lc=πβe-βo,
Lci=Lciλ, w, t, ng, nc, si; i=1, 2, 3, 4.
Le=2Lcπcos-1ηs,
Lei=Leiλ, w, t, ng, nc, si; i=1, 2, 3, 4.
β=βλ, w, t, ng, nc.
ng=ngλ, E11xor E11y mode,
nc=ncλ, E11xor E11y mode.
ηCRO=ηCROLi, si, ΔLj, w, t; λ, E11x or E11y mode, i=1, 2, 3, 4; j=1, 2, 3.
ηCROλ, E11x mode=ηCROλ, E11y mode=0,at and near λ=λ1, λ3,, λ2N-11,at and near λ=λ2, λ4,, λ2N,
Dmn=ηCROmn-Om; m=1, 2,, 2N; n=1, 2,
δ=mn Dmn2; m=1, 2,, 2N; n=1, 2.
δxj=0; j=1, 2,, 7,
xjj=1, 2,, 7=L1, L2, L3, L4, ΔL1, ΔL2, ΔL3.

Metrics